Date of Award

12-1-2012

Degree Name

Master of Science

Department

Zoology

First Advisor

Feldhamer, George

Second Advisor

Brooks, Marjorie

Abstract

Research on the chronic effects of toxic chemicals on individuals, populations, communities, and ecosystems is imperative to regulate pollutants and preserve threatened species and habitats. I designed a two-pronged study to investigate the effects of heavy metal contaminants on small mammal populations, communities and body condition. To compare population and community metrics, I conducted a year-long mark-and-release study from over 5,400 trap nights on a contaminated and reference site within Crab Orchard National Wildlife Refuge, a Superfund site. During the second phase, I compared contaminant residues to body condition in 29 white-footed mice (Peromyscus leucopus) and 21 southern short-tailed shrews (Blarina carolinensis) from the Refuge and from three reference sites. Body weight, age structure, trapping success or species diversity did not differ between sites. Mice from the contaminated site were more abundant with lower reproduction (as number of juveniles per adult female). Cadmium in both livers and kidneys of mice and shrews was significantly greater on the contaminated site. Elevated renal cadmium in mice (96 ± 79 mg/kg dry weight) and shrews (242 ± 166 mg/kg dry weight) from the contaminated site could likely impair physiologic functions with long-term effects. For white-footed mice, increasing renal copper, lead, and nickel were good predictors of low ash, water, and protein but did not correlate significantly with crude lipid content. In shrews, however, metals either showed no relationship or, in the case of renal cadmium and copper were positively related to body condition as increased protein content. Simply comparing animals from reference versus contaminated sites provided few insights into overall community structure or population dynamics of white-footed mice. While metals explained as much as 40% of body condition (ash) in mice, findings in both species are counter-intuitive or refute predictions. Future studies should include manipulative field experiments that pair higher-resolution, biologic responses such as histologic and biomarker assays with population and community dynamics.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.