Date of Award
5-1-2024
Degree Name
Master of Science
Department
Computer Science
First Advisor
Talukder, Dr. Sajedul
Abstract
The widespread popularity of Federated Learning (FL) has led researchers to delve into its various facets, primarily focusing on personalization, fair resource allocation, privacy, and global optimization, with less attention puts towards the crucial aspect of ensuring efficient and cost-optimized communication between the FL server and its agents. A major challenge in achieving successful model training and inference on distributed edge devices lies in optimizing communication costs amid resource constraints, such as limited bandwidth, and selecting efficient agents. In resource-limited FL scenarios, where agents often rely on unstable networks, the transmission of large model weights can substantially degrade model accuracy and increase communication latency between the FL server and agents. Addressing this challenge, we propose a novel strategy that integrates a knowledge distillation technique with a Particle Swarm Optimization (PSO)-based FL method. This approach focuses on transmitting model scores instead of weights, significantly reducing communication overhead and enhancing model accuracy in unstable environments. Our method, with potential applications in smart city services and industrial IoT, marks a significant step forward in reducing network communication costs and mitigating accuracy loss, thereby optimizing the communication efficiency between the FL server and its agents.
Access
This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.