Date of Award

12-1-2023

Degree Name

Master of Science

Department

Electrical and Computer Engineering

First Advisor

Ahmed, Shaikh

Abstract

TCAD numerical simulations have been carried out to study the current-voltage, electrical breakdown, and self-heating characteristics of β-Ga2O3 based metal-oxide field effect transistors (MOSFETs). β-Ga2O3 semiconductor has an ultra-wide bandgap of ~ 4.8 eV, a theoretical critical breakdown field strength, Ec ~ 8 MV/cm, making it an excellent candidate for high-voltage or power electronics applications. The numerical simulations have been benchmarked against experimentally reported data. For modeling impact ionization, which is expected to induce intrinsic avalanche breakdown, the Selberherr’s model has been used with appropriate parameterization. For a device with a gate length of 2 μm, 0.6 μm gate-drain spacing, 3.4 μm source-drain spacing, and 20 nm thick Al2O3 gate insulator, the intrinsic breakdown voltage was found to be ~460 V. While self-heating dramatically affects the output current and conductance, it has an insignificant effect on the breakdown voltage. The use of a thinner epitaxial channel was found to increase the breakdown voltage slightly (by ~30 V).

Available for download on Wednesday, February 25, 2026

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.