Date of Award

6-1-2021

Degree Name

Master of Science

Department

Molecular Cellular and Systemic Physiology

First Advisor

Jensik, Philip

Abstract

Deformed epidermal autoregulatory factor 1 (DEAF1) encodes a transcription factor essential in early embryonic and neuronal development. In humans, mutations in the DNA binding domain of DEAF1 cause intellectual disability together with clinical characteristics collectively termed DEAF1-associated neurodevelopmental disorders (DAND). The objective of this study is to 1) assess the pathogenicity of newly identified variants using established functional assays, and 2) confirm and map the interaction domain of DEAF1 with HDAC1 and evaluate the importance of DEAF1-HDAC1 interaction on DEAF1-mediated transcriptional repression. Exome sequencing analysis identified six de novo DEAF1 mutations (p.D200Y, p.S201R, p.K250E, p.D251N, p.K253E, and p.F297S). Promoter activity experiments indicate DEAF1 transcriptional repression activity was altered by p.K250E, p.K253E, and p.F297S. Transcriptional activation activity was altered by p.K250E, p.K253E, p.F297S, and p.D251N. Combined with clinical phenotype of the patients, this work establishes the pathogenicity of new DEAF1 variants. Previous studies identified a potential protein interaction between DEAF1 and several proteins of the nucleosome remodeling and deacetylating (NuRD) complex including Histone Deacetylase 1 (HDAC1), Retinoblastoma Binding Protein 4 (RBBP4), Methyl CpG Binding Domain Protein 3 (MBD3). GST pull-down and co-immunoprecipitation (CoIP) assays confirmed and mapped the interaction with HDAC1 between amino acids 113 – 176 of DEAF1. To determine whether DEAF1-mediated repression requires HDAC1 activity, HEK293t wild type or CRISPR/Cas9-mediated DEAF1 knockout cells were treated with the HDAC inhibitor Trichostatin A (TSA). Interestingly, this study demonstrates that the requirement of HDAC1 activity on DEAF1-mediated transcriptional repression activity is target gene specific and expands our understanding of DEAF1 mediated transcriptional repression.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.