Date of Award
12-1-2019
Degree Name
Master of Science
Department
Chemistry
First Advisor
Shamsi, Mohtashim
Abstract
DNA repeat expansion sequences cause a myriad of neurological diseases when they expand beyond a critical threshold. Previous electrochemical approaches focused on the detection of trinucleotide repeats (CAG, CGG, and GAA) and relied on labeling of the probe and/or target strands or enzyme-linked assays. However, detection of expanded GC-rich sequences is challenging because they are prone to forming secondary structures such as cruciforms and quadruplexes. Here, we present label-free detection of hexanucleotide GGGGCC repeat sequences, which cause the leading genetic form of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The approach relies on capturing targets by surface-bound oligonucleotide probes with a different number of complementary repeats, which proportionately translates the length of the target strands into charge transfer resistance (RCT) signal measured by electrochemical impedance spectroscopy (EIS). The probe carrying three tandem repeats transduces the number of repeats into RCT with a 3× higher calibration sensitivity and detection limit. Chronocoulometric measurements show a decrease in surface density with increasing repeat length, which is opposite of the impedance trend. This implies that the length of the target itself can contribute to amplification of the impedance signal independent of the surface density. Moreover, the probe can distinguish between a control and patient sequences while remaining insensitive to non-specific Huntington’s disease (CAG) repeats in the presence of a complementary target. This label-free strategy might be applied to detect the length of other neurodegenerative repeat sequences using short probes with a few complementary repeats.
Access
This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.