Date of Award

12-1-2015

Degree Name

Master of Science

Department

Electrical and Computer Engineering

First Advisor

Tragoudas, Spyros

Abstract

It is shown that the path delay fault (PDF) model may not be very effective in guiding post silicon debug. It is also shown that the multiple transition fault (MTF) model allows for significant reduction of the initial suspect set. However the number of faults is much higher than the number of PDFs. A Monte Carlo approach is presented that uses multiple transition faults with appropriately assigned weights to identify defective embedded segments. It is experimentally verified that the approach guides diagnosis more efficiently than the path delay fault model. Fault-implicit algorithms are presented to cope with fault-related scalability challenges. Our results in ISCAS '89, ISCAS'85, ITC '99 benchmarks show a huge reduction in the suspect set using the proposed fault model and algorithms. It is shown that the proposed method guides effectively fault diagnosis.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.