Date of Award
8-1-2013
Degree Name
Master of Science
Department
Mechanical Engineering
First Advisor
Nsofor, Emmanuel
Abstract
This study is on the development and characterization of a phase change material (PCM)-based solar energy storage system. An evacuated tube solar collector was used to transfer thermal energy to water circulated by a solar-operated pump. The water flows through a heat exchanger embedded in the phase change material in a storage tank, thus transferring energy to the PCM which changes phase and stores thermal energy. The system is completely renewable as solar energy conversion was applied in the system to power all the electrical components. The PCM used in this system is vegetable-based, therefore non-toxic. Analytical and experimental studies were performed to investigate the performance of the system. Average thermal energy stored over the six months of testing was 50.63 MJ with just about 45 kg of PCM. The system performed best in the summer period with an efficiency of 63.6% when the lowest thermal energy loss was recorded. A low heat transfer fluid flowrates of 3 L/min (0.05 kg/s) and 2 L/min (0.033 kg/s) produced the best heat storage and heat recovery processes respectively.
Access
This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.