Date of Award
5-1-2013
Degree Name
Master of Science
Department
Mathematics
First Advisor
Calvert, Wesley
Abstract
A classic combinatorics problem is: What is the probability that if n people randomly reach into a dark closet to retrieve their hats, no person will pick his own hat? Now there are n! ways to retrieve n hats if you didn't care which hat you got. But for this problem you need to determine how may different ways no person will pick his own hat. In this paper we expand on the original idea and consider two variations of this problem: If there are n elements and m distinguishable possibilities, in how many ways can you rearrange these elements. For example, if n men check their hats and k women check their hats, in how many ways will the men retrieve a different hat than the one he checked. The second problem is: if n people randomly reach into a dark closet to retrieve their hat but now there are m hats in the closet, how many different ways will no person retrieve his hat? In the second case m >= n.
Access
This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.