Abstract
Power method polynomials are used for simulating non-normal distributions with specified product moments or L-moments. The power method is capable of producing distributions with extreme values of skew (L-skew) and kurtosis (L-kurtosis). However, these distributions can be extremely peaked and thus not representative of real-world data. To obviate this problem, two families of distributions are introduced based on a doubling technique with symmetric standard normal and logistic power method distributions. The primary focus of the methodology is in the context of L-moment theory. As such, L-moment based systems of equations are derived for simulating univariate and multivariate non-normal distributions with specified values of L-skew, L-kurtosis, and L-correlation. Evaluation of the proposed doubling technique indicates that estimates of L-skew, L-kurtosis, and L-correlation are superior to conventional product-moments in terms of relative bias and relative efficiency when extreme non-normal distributions are of concern.
Recommended Citation
Pant, Mohan D. and Headrick, Todd C. "A Doubling Technique for the Power Method Transformations." (Jan 2012).
Comments
Published in Applied Mathematical Sciences, vol. 6, no. 130 (2012) at http://m-hikari.com/ams/ams-2012/index.html.