Date of Award

8-1-2013

Degree Name

Doctor of Philosophy

Department

Engineering Science

First Advisor

Luo, Albert

Second Advisor

Chu, Tsuchin

Abstract

Vibro-impact systems are extensively used in engineering and physics field, such as impact damper, particle accelerator, etc. These systems are most basic elements of many real world applications such as cars and aircrafts. Such vibro-impact systems possess both the continuous characteristics as continuous dynamical systems and discrete characteristics introduced by impacts at the same time. Thus, an appropriately developed discrete mapping system is required for such vibro-impact systems in order to simplify investigation on the complexity of motions. In this dissertation, a few vibro-impact oscillators will be investigated using discrete maps in order to understand the dynamics of vibro-impact systems. Before discussing the nonlinear dynamical phenomena and behaviors of these vibro-impact oscillators, the theory for nonlinear discrete systems will be applied to investigate a two-dimensional discrete system (Henon Map). And the complete dynamics of such a nonlinear discrete dynamical system will be presented using the inversed mapping method. Neimark bifurcations in such a discrete system have also drawn a lot of interest to the author. The Neimark bifurcations in such a system have actually formed a boundary dividing the stable solution of positive and negative maps (inversed mapping). For the first time, one is able to obtain a complete prediction of both stable and unstable solutions in such a discrete dynamical system. And a detailed parameter map will be presented to illustrate how changes of parameters could affect the different solutions in such a system. Then, the theory of discontinuous dynamical systems will be adopted to investigate the vibro-impact dynamics in several vibro-impact systems. First, the bouncing ball dynamics will be analytically discussed using a single discrete map. Different types of motions (periodic and chaotic) will be presented to understand the complex behavior of this simple model. Analytical condition will be expressed using switching phase of the system in order to easily predict stick and grazing motion. After that, a horizontal impact damper model will be studied to show how complex periodic motions could be developed analytically. Complete set of symmetric and asymmetric periodic motions can also be easily predicted using the analytical method. Finally, a Fermi-Accelerator being excited at both ends will be discussed in detail for application. Different types of motions will be thoroughly studied for such a vibro-impact system under both same and different excitations.

Share

COinS
 

Access

This dissertation is Open Access and may be downloaded by anyone.