Date of Award

8-1-2024

Degree Name

Doctor of Philosophy

Department

Mathematics

First Advisor

Schurz, Henri

Abstract

The stochastic SEIR(S) model with random total population is given by the system of stochastic differential equations:dS=(-βSI+μ(K-S)+αI+ζR)dt-σ_1 SIF_1 (S,E,I,R)dW_1+σ_4 RF_4 (S,E,I,R)dW_4+σ_5 S(K-N)dW_5\\ dE=(βSI-(μ+η)E)dt+σ_1 SIF_1 (S,E,I,R)dW_1-σ_2 EF_2 (S,E,I,R)dW_2+σ_5 E(K-N)dW_5 \\ dI=(ηE-(α+γ+μ)I)dt+σ_2 EF_2 (S,E,I,R)dW_2-σ_3 IF_3 (S,E,I,R)dW_3+σ_5 I(K-N)dW_5 \\ dR=(γI-(μ+ζ)R)dt+σ_3 IF_3 (S,E,I,R)dW_3-σ_4 RF_4 (S,E,I,R)dW_4+σ_5 R(K-N)dW_5, where σ_i>0 and constants α, β, η, γ, ζ, μ≥0. K represents the maximum carrying capacity for the total population and W_k=(W_k (t))_(t≥0) are independent, standard Wiener processes on a complete probability space (Ω,F,(F_t )_(t≥0),P). The SDE for the total population N=S+E+I+R has the form dN(t)=μ(K-N)dt+σ_5 N(K-N)dW_5 on D_0=(0,K). The goal of our study is to prove the existence of unique, Markovian, continuous time solutions on the 4D prism D={(S,E,I,R)∈R_+^4:0≤S, E,I,R≤K, S+E+I+R≤K}. Then using the method of Lyapunov functions we prove the asymptotic stochastic and moment stability of disease-free and endemic equilibria. Finally, we use numerical simulations to illustrate our results.

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.