Date of Award

5-1-2019

Degree Name

Doctor of Philosophy

Department

Psychology

First Advisor

Kibby, Michelle

Abstract

The development of functional connectivity is often described as changing from local to distributed connections which give rise to the functional brain networks observed in adulthood. In contrast to the well-explored pattern found in functional connectivity, no research has been published describing effective connectivity development. Also, there is a plethora of literature describing functional connectivity patterns in a variety of neurodevelopmental and internalizing disorders, but there is little consistency in the connectivity patterns discovered for each disorder. Hence, this study aimed to describe functional and effective resting-state connectivity during adolescent development in a typically developing adolescent (TDA) group (n = 128) and to determine how adolescents with comorbid neurodevelopmental disorders (CND) (n = 46) differed. This was accomplished through functional and effective connectivity analysis within and between four networks: the Default Mode Network (DMN), the Salience Network (SN), the Dorsal Attention Network (DAN), and the Frontal Parietal Control Network (FPCN). The results from this study indicate that within-network connectivity decreased across age in the TDA group, which is in opposition to previous work which suggests strengthening within-network connectivity. The CND group displayed hyper-connectivity compared to the TDA group in between-network connectivity with no effect of age. The effective connectivity in the TDA group displayed decreasing connectivity within networks with increasing age, a novel effect not previously reported in the literature. The CND group’s effective connectivity was overall hyper-connected (for within- and between-networks). The functional connectivity patterns in the TDA group suggest that functional connectivity has subtle developmental change during adolescence. Further, the CND group consistently displayed hyper-connectivity in functional and effective connectivity. The CND group, and perhaps similar comorbid groups, may have less efficient networks which could contribute to their disorder(s).

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.