Date of Award


Degree Name

Master of Science


Electrical and Computer Engineering

First Advisor

Gupta, Lalit


Face recognition can be used in various biometric applications ranging from identifying criminals entering an airport to identifying an unconscious patient in the hospital With the introduction of 3-dimensional scanners in the last decade, researchers have begun to develop new methods for 3-D face recognition. This thesis focuses on 3-D face recognition using the one- and two-dimensional Discrete Cosine Transform (DCT) . A feature ranking based dimensionality reduction strategy is introduced to select the DCT coefficients that yield the best classification accuracies. Two forms of 3-D representation are used: point cloud and depth map images. These representations are extracted from the original VRML files in a face database and are normalized during the extraction process. Classification accuracies exceeding 97% are obtained using the point cloud images in conjunction with the 2-D DCT.




This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.