Date of Award


Degree Name

Master of Science



First Advisor

Deria, Pravas


This thesis documents efforts to synthesize Metal-Organic Frameworks (MOFs) and study their charge transport, electrocatalytic, and photoredox catalytic properties. Chapter 1 introduces concepts of pre-synthetic and post-synthetic metalation of MOFs. A series of four chemically identical but structurally different hydrolytically robust ZrIV-MOFs constructed from tetrakis(4-carboxyphenyl) porphyrinato iron (III) are examined to understand the influence of topological construction on redox hopping conductivity. The structural variation fixes center-to-center distances in the four MOFs and defines the hopping rate. The spin-state variation of the central metal in the porphyrin unit helps in further tuning the TCPP(FeIII/II) reorganization energy of the self-exchange process. The hopping rate significantly increased upon axial coordination of 1-methyl imidazole to the iron center, which converts a weakly halide bound five-coordinated high-spin (HS) TCPP(FeIII/II) to the six-coordinated low-spin (LS) complex. The population of LS vs HS species is shown to be a function of topology in the presence of an excess ligand. Chapter 2 investigates this idea further by using MOFs for electrocatalytic oxygen reduction reaction (ORR). Two cobalt-centered porphyrin-based MOFs are synthesized and deposited on various substrates to afford working electrodes that can be used in an electrochemical cell to catalyze the ORR. Chapter 3 investigates the linker-dependent photoredox catalytic activity of MOFs that possess the same topology. This is the first MOF-based study wherein a heavy metal like ruthenium is not employed to carry out the visible light-dependent photoredox catalysis.

Available for download on Wednesday, January 18, 2023




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.