Date of Award

9-1-2021

Degree Name

Master of Science

Department

Mechanical Engineering

First Advisor

Nilufar, Sabrina

Abstract

Sandwich panels serve many purposes in engineering applications. Additive manufacturing opened the door for easy fabrication of the sandwich panels with different core structures. In this study, additive manufacturing technique, experiments, and numerical analysis are combined to evaluate the mechanical properties of sandwich panels with different cellular core structures. The sandwich panels having honeycomb, re-entrant honeycomb, diamond, square core topologies are printed with the vat photopolymerization technique. Uniaxial compression testing is performed to determine the compressive modulus, strength, and specific strength of these lightweight panels. Elasto-plastic finite element analysis having good similarities with the experimental results provided a preview of the stress distribution of the sandwich panels under applied loading. The imaging of the tested samples showed the fractured regions of the cellular cores. Dynamic mechanical analysis of the panels provided scope to compare the performance of panels and solid materials with the variation of temperature. Sandwich panels with the diamond structure exhibit better compressive properties and specific strength while the re-entrant structure offers high energy absorption capacity. The sandwich structures provided better thermo-mechanical properties than the solid material. The findings of this study offer insights into the mechanical properties of sandwich panels printed with vat photopolymerization technique which can benefit a wide range of engineering applications.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.