Date of Award

8-1-2018

Degree Name

Master of Science

Department

Electrical and Computer Engineering

First Advisor

Baduge, Gayan

Abstract

The broadcast nature of wireless medium has made information security as one of the most important and critical issues in wireless systems. Physical layer security, which is based on information-theoretic secrecy concepts, can be used to secure the wireless channels by exploiting the noisiness and imperfections of the channels. Massive multiple-input multiple-output (MIMO) systems, which are equipped with very large antenna arrays at the base stations, have a great potential to boost the physical layer security by generating the artificial noise (AN) with the exploitation of excess degrees-of-freedom available at the base stations. In this thesis, we investigate physical layer security provisions in the presence of passive/active eavesdroppers for single-hop massive MIMO, dual-hop relay-assisted massive MIMO and underlay spectrum-sharing massive MIMO systems. The performance of the proposed security provisions is investigated by deriving the achievable rates at the user nodes, the information rate leaked into the eavesdroppers, and the achievable secrecy rates. Moreover, the effects of active pilot contamination attacks, imperfect channel state information (CSI) acquisition at the base-stations, and the availability of statistical CSI at the user nodes are quantified. The secrecy rate/performance gap between two AN precoders, namely the random AN precoder and the null-space based AN precoder, is investigated. The performance of hybrid analog/digital precoding is compared with the full-dimensional digital precoding. Furthermore, the physical layer security breaches in underlay spectrum-sharing massive MIMO systems are investigated, and thereby, security provisions are designed/analyzed against active pilot contamination attacks during the channel estimation phase. A power-ratio based active pilot attack detection scheme is investigated, and thereby, the probability of detection is derived. Thereby, the vulnerability of uplink channel estimation based on the pilots transmitted by the user nodes in time division duplexing based massive MIMO systems is revealed, and the fundamental trade-offs among physical layer security provisions, implementation complexity and performance gains are discussed.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.