Date of Award
8-1-2018
Degree Name
Master of Science
Department
Electrical and Computer Engineering
First Advisor
Kagaris, Dimitrios
Abstract
Current OBD-II vehicle systems detect misfires by monitoring slight variances of crankshaft acceleration throughout power-strokes of each of the engine’s cylinders. If the PCM determines that the acceleration of the engine’s crankshaft is inappropriate, it concludes a misfire is detected. However, after this misfire is detected, the technician still needs to diagnose (isolate) the root-cause. Diagnosis is no easy task, especially with several potential subsystems that could be at fault: fuel injection, air-intake, sparkignition, and engine-mechanical. With this being said, it is difficult for many technicians to isolate the fault causing a misfire because of the wide range of root-cause possibilities within each of the subsystems. The proposed On-Board Diagnostics III contributes to the computer-aided detection and diagnosis of future-production vehicle faults. Several data-mining algorithms were investigated and applied to data parameters collected from misfire and misfire-free fault instances. Rules were then used to accurately classify future engine misfire fault instances.
Access
This thesis is only available for download to the SIUC community. Others should
contact the interlibrary
loan department of your local library.