Date of Award


Degree Name

Master of Science



First Advisor

Ali, Naushad


The magnetocaloric and thermomagnetic properties of the MnNiGe1-xAlx, Ni50Mn35(In1−xCrx)15 and (Mn1−xCrx)NiGe1.05 systems have been studied by x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. Partial substitution of Al for Ge in MnNiGe1−xAlx results in a first-order magnetostructural transition (MST) from a hexagonal ferromagnetic to an orthorhombic antiferromagnetic phase at 186 K (for x = 0.09). A large magnetic entropy change of ∆SM = -17.6 J/kg K for ∆H = 5 T was observed in the vicinity of TM = 186 K for x = 0.09. This value is comparable to those of well-known giant magnetocaloric materials, such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13 [1]. The values of the latent heat (L = 6.6 J/g) and corresponding total entropy changes (∆ST = 35 J/kg K) have been evaluated for the MST using DSC measurements. Large negative values of ∆SM of -5.8 and -4.8 J/kg K for ∆H = 5 T in the vicinity of TC were observed for x = 0.09 and 0.085, respectively. Partial substitution of Cr for Mn in(Mn1−xCrx)NiGe1.05 results in a MST from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near TM ~ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni50Mn35(In1−xCrx)15 shifts the magnetostructural transition to a higher temperature (TM ~ 450 K) for x = 0.1. Large magnetic entropy changes of ∆SM = -12 (J/kgK) and ∆S = -11 (J/kgK), both for a magnetic field change of 5 T, were observed in the vicinity of TM for (Mn1−xCrx)NiGe1.05 and Ni50Mn35(In1−xCrx)15, respectively. The concentration-dependent (T-x) phase diagram of transition temperatures (magnetic, structural, and magnetostructural) has been generated using magnetic, XRD, and DSC data. The role of magnetic and structural changes on transition temperatures are discussed.




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.