Date of Award

12-1-2020

Degree Name

Doctor of Philosophy

Department

Agricultural Sciences

First Advisor

Park, Logan

Abstract

AN ABSTRACT OF THE DISSERTATION OFLaith A. Zeinaldeen, for the Doctor of Philosophy degree in AGRICULTURAL SCIENCES – Renewable Energy, presented on November 2, 2020, at Southern Illinois University Carbondale.TITLE: ESTIMATING THE PERFORMANCE OF HYBRID (MONOCRYSTALLINE PV - COOLING) SYSTEM USING DIFFERENT FACTORSMAJOR PROFESSOR: Dr. Logan O. ParkAmbient temperature significantly affects photovoltaic (PV) panel performance. High temperature reduces PV panel efficiency, fill factor, and maximum power, driving up solar electrical system investment return period by increasing startup cost. Using a proper cooling system to cool down the PV panel temperature, especially during the summer season, will improve the PV panel performance, enhance its longevity, and accelerate the startup cost recovery to the solar electrical system. This dissertation presents two studies about monocrystalline PV panels. The studies used two general objectives: (i) study the best cooling period and water nozzle type to improve the monocrystalline PV panel output; and (ii) evaluating the performance of the monocrystalline PV panel using different cooling systems, other water pump discharge, and various water types during different times of day. In the first study (chapter 4), an experiment was conducted during July 2018 to determine Effect of using different cooling periods and different water nozzle types on the fill factor, efficiency, and the maximum power of monocrystalline PV panel. This experiment used two factors. The first factor was the cooling periods, which included three levels of PV panel cooling periods (5, 15, and 30 minutes). The second factor was water nozzle type: hollow cone and flat fan.In the second study (chapters 5, 6, and 7), an experiment was conducted during July and August 2018 to determine Effect of using different factors on the performance of monocrystalline PV panel at a site belong to the College of Agriculture – Southern Illinois University in Carbondale, IL. This experiment used four factors. The first factor was the time of day, the second factor was the cooling system, the third factor was the water pump discharge, and the fourth factor was the water type. The present studies' principal findings were: (i) the first experiment, the 15 minutes cooling period achieved the highest PV panel fill factor (0.795). In comparison, the 30 minutes cooling period reached the highest panel efficiency (18.6%) and maximum power (92.5 Watt). In contrast, the 5 minutes cooling period achieved the lowest PV panel fill factor (0.720), lowest panel efficiency (12.9%), and most insufficient panel maximum power (63.5 Watt). The hollow cone water nozzle achieved the highest panel fill factor (0.783), highest panel efficiency (16.60%), and the most elevated PV panel maximum power (82.8Watt). Interaction between the cooling and water nozzle types was non-significant on PV panel fill factor, significant on panel efficiency, and highly significant on PV panel maximum power. The interaction results between the cooling period and nozzle type demonstrate that the hollow cone nozzle with 30 minutes cooling period achieved the highest panel fill factor, highest panel efficiency, and the most elevated panel maximum power. The flat fan with a 5-minute cooling period achieved the lowest fill factor, lowest panel efficiency, and most insufficient panel maximum power. Tukey test results showed a highly significant difference (P < 0.0001) between the cooling period and the control treatment, and between the nozzle type treatment and the control treatment on panel fill factor, efficiency, and panel maximum power. Cooling periods have the most considerable effect on panel fill factor, panel efficiency, and maximum panel power, followed by the nozzle type. (ii) The second experiment results showed, the first cooling system (HC1) achieved the highest PV panel maximum power (77.0Watt), highest fill factor (0.745), highest PV panel efficiency (14.75%), highest average net energy (39.5Wh), highest PV panel energy (189.0 Wh) and highest average power gain (34.6Watt) comparing to the rest of the cooling systems. In comparison, the fourth (FtF2) achieved the lowest maximum power (58.0 Watt), lowest fill factor (0.653), lowest average efficiency (11.6%), lowest average net energy (-4.0Wh), lowest average energy (147.5Wh), and lowest average power gain (17.5 Watt). The fifth cooling system (SP) achieved the least average water consumption (2.0 L / hr.), while the second cooling system (HC2) achieved the highest average water consumption (39.0 L / hr.). The medium water pump discharge (M) produced the most elevated PV panel maximum power (67.6 Watt), highest fill factor (0.709), highest average PV panel efficiency (13.28%), highest average PV panel net energy (18 Wh), highest average PV panel energy (169.0Wh) and the highest average PV panel power gain (25.9Watt). High water pump discharge (H) achieved the lowest maximum power (63.8Watt), lowest average panel efficiency (12.48%), lowest average net energy (7.5Wh), lowest average panel energy (159.5Wh), and the lowest average power gain (21.8 Watt). The low water pump discharge (L) achieved the lowest panel fill factor (0.698). Lake water achieved the highest panel maximum power (66.1Watt), lowest PV panel fill factor (0.698), highest panel efficiency (12.94%), lowest net energy (12.8 Wh), highest panel energy (165.2 Wh), and lowest power gain (23.5Watt). In contrast, city water achieved the most elevated PV panel fill factor (0.708), most insufficient panel maximum power (64.8 Watt), highest average PV panel net energy (14.8 Wh), lowest efficiency (12.62%), highest average PV panel power gain (24.25 Watt) and lowest panel energy (162.1 Wh). Tukey post hoc difference testing showed highly significant differences (P < 0.0001) between the time of day, cooling system, water pump discharge, water type treatments, and their control treatment on PV panel maximum power, fill factor, panel efficiency, panel net energy, panel energy, power gain, and the system water consumption. The cooling system has the most considerable effect on PV panel maximum power, panel fill factor, panel efficiency, panel net energy, panel energy, panel power gain, and the system water consumption. In general, using the cooling system improves the PV panel performance through enhancing the PV panel efficiency, maximum panel power, panel fill factor, panel net energy, panel energy, and PV panel power gain. Keywords: Cooling system, cooling periods, water pump discharge, water type, time of day, efficiency, maximum power, fill factor, net energy, panel energy, PV panel power gain, and cooling system water consumption.

Available for download on Tuesday, February 24, 2026

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.