Date of Award


Degree Name

Doctor of Philosophy


Engineering Science

First Advisor

Filip, Peter


A multi-functional (sensing -actuating) greenhouse ventilation window heated/cooled naturally by convection was designed to overcome different industry challenges in terms of designing smart applications. This ventilation window design includes a three-pulley system to reduce the load on the NiTi actuator and enhance its long-life time. In addition, using the NiTi actuator allows energy saving due to natural phase transformation induction (i.e. convection) and high force generation compared to the small NiTi wire mass. Structural analysis was used to determine the force generated in the “C-shaped” NiTi wire after loading. Transient thermal and structural analysis also was used to investigate the strain rate effects on the shape memory response of “C shaped” NiTi alloy element under different thermomechanical loadings and boundary conditions. Two types of loading have been applied isothermally or at adiabatic conditions. The results showed a significant effect of the high loading rates on increasing the stress plateau which is caused by the corresponding shift in the transformation temperatures. As a result, it could be expected that the actuator life time could be reduced when a rapid, as opposed to a slow loading rate, is adopted. In addition, the dynamic loading of the NiTi leads to a decrease of the recoverable strain. Experimental work was done to validate the simulation model by testing a commercial NiTi sample dynamically and compare the macroscopic displacement during mechanical loading and the strain recovery process.




This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.