Date of Award

5-1-2018

Degree Name

Doctor of Philosophy

Department

Electrical and Computer Engineering

First Advisor

Hatzidoniu, Constantine

Abstract

In this dissertation harmonic current, harmonic torque originated at the load and harmonic torque originated at the motor, where modeled and treated via closed loop control. The dissertation propose a remedy for cancelling harmonic current by placing the proposed adaptive feedforward controller (AFC) in parallel with the FOC current control. Similarly, harmonic torque load was cancelled by proposing an AFC in parallel with the speed control loop. Harmonic torque originated in the motor mainly due to harmonic flux where cancelled through the estimation of harmonic flux, which was achieved by a novel Minimal Parameter Harmonic Flux Estimator (MPHFE). The latter is formulated such that the inductance, resistance, and stator current and its derivative are not necessary for the estimation of the harmonic eflux. This was achieved by forcing the harmonic current induced by the harmonic flux component to zero through the combined action of a Field-Oriented Controller (FOC) and a feed-forward controller. Subsequently, the harmonic flux can be obtained directly from the estimated harmonic back-EMF without the involvement of other motor parameters. Finally, the estimated flux is used in conjunction with a comprehensive analysis of the motor harmonic torque to determine the stator current compensation to eliminate the torque harmonic. A systematic approach to assign the parameter of the AFC controller were developed in this dissertation. Furthermore, multiple experiments were conducted to demonstrate the efficacy of the proposed control schemes harmonics.

Available for download on Saturday, September 05, 2020

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.