Date of Award


Degree Name

Doctor of Philosophy


Engineering Science

First Advisor

Don, Jarlen


AN ABSTRACT OF THE DISSERTATION OF TITLE: (OPTIMIZATION PROTECTION OF CARBOB-CARBON COMPOSITES DISC-BRAKES MATERIAL BY COATING WITH ANTI-OXIDANTS) Developing glass enhancer mixture solutions (Ki’s), which promote the formation of a stable glass layer, homogenous clear liquid solution, and low viscosity liquid form, are easy to apply, and penetrating. They are compatible with ceramic liquid glass based anti-oxidants for treating surfaces of carbon/carbon composites material, and significantly increase the rate of protection against oxidation. Ki’s’ are comprised of mixing chemical compositions at standard temperature and pressure conditions from group one and two such as Na, K, Ca, Mg, etc. of 5 to 25 wt. %, deionized water from 95 to 75 % by weight, and adding up to 1 % by weight of surfactants such as DF-16, DF-20, and CF-10 with specific proportions, and followed by thorough stirring to produce a homogeneous blend of mixture solution. The glass enhancers, which are aqueous mixture solutions, are applied to the surfaces of carbon/carbon (C/C) composites by dipping, brushing, spraying, or other painting application techniques, followed by annealing, or a heat-treating range of 80 to 110 ℃ for a minimum of 8 hours, and allowing cooling time of the coated C/C composites of a minimum of 12 hours to room temperature. Preferential compatibility of the glass enhancer mixture solutions (Ki's) is with liquid glass former's, anti-oxidants comprised mostly of borate and phosphate glasses. The glass enhancer solution mixtures (Ki’s) are supplemental additions to ceramics’ liquid anti-oxidants coatings used for carbon-carbon composites protection against oxidation, and it will increase the rate of protection against oxidation for low, and moderate temperature’s range from 400 to 900 ℃. The glass enhancer Ki’s mixture solutions should be used with liquid glass former's’ anti-oxidants, such as SiO₂, GeO₂, B₂O₃, and P₂O₅. A series of glass enhancer’s Ki’s, heat treatment cycle (char-cycle) ranged between 700 to 900 ℃, and application methods, were developed and tested experimentally. Two arbitrary isothermal temperatures of 650 ℃, and 871 ℃ were selected for thermal oxidation testing, and a temperature of 650 ℃ was selected, and tested against catalytic thermal oxidation. Additions of glass enhancer Ki’s improved protection of C/C composites disc-brakes against oxidation by double, and triple amount of time in hours versus the use of anti-oxidant coatings alone.




This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.