Date of Award

5-1-2012

Degree Name

Master of Science

Department

Mechanical Engineering

First Advisor

Aouadi, Samir

Abstract

With an increasing demand for alternative clean energy solutions, much effort is being invested in the progression of nanoscale semiconductor materials in hopes of better harnessing solar energy. ZnO and TiO2 remain the most prominent photocatalytically active materials. This thesis reports on a comparison between nanoscale core-shell and hierarchical Zn-Ti-O/ZnO heterostructures. After a seed layer thickness optimization, hydrothermally grown ZnO nanorods were coated with mixed concentrations of Ti and Zn within an oxygen rich sputtering environment at two distinct temperature zones. Core-shell structures resulted from low temperature (23°C) depositions while hierarchical branch structures grew at high temperature (800°C). Excluding deposition temperature and the strategic variation of Zn and Ti gun power, every fabrication process remained identical between the two resultant heterostructure groups. Amongst the variety of samples produced, one from each heterostructure group proved notably similar in structural dimension, composition, and crystallization, yet demonstrated distinct differences in photoluminescence and dye degradation via UV-visible light spectroscopy. While photoluminescence results indicated core-shell heterostructure more photocatalytically promising, hierarchical heterostructure prevailed as the more powerful photocatalyst. Increased surface area due to hierarchical branching in conjunction with enhanced light exposure was believed responsible for the improved photocatalytic effectiveness.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.