Date of Award


Degree Name

Master of Science


Mechanical Engineering

First Advisor

Mondal, Kanchan

Second Advisor

Spearing, Anthony


The mining industry is a major consumer of rock bolts in the United States. Due to the high humidity in the underground mining environment, the rock bolts corrode and loose their load bearing capacity which in turn reduces the life expectancy of the ground support and, thus, creates operational difficulties and number of safety concerns [1]. Research on rock anchor corrosion has not been adequately extensive in the past and the effects of several factors in the mine atmosphere and waters are not clearly understood. One of the probable reasons for this lack of research may be attributed to the time required for gathering meaningful data that makes the study of corrosion quite challenging. In this particular work underground water samples from different mines in the Illinois coal basin were collected and the major chemical content was analyzed and used for the laboratory testing. The corrosion performance of the different commercial rock anchors was investigated by techniques such as laboratory immersion tests in five different corrosion chambers, and potentiodynamic polarization tests in simulated ground waters based on the Illinois coal basin. The experiments were conducted with simulate underground mining conditions (corrosive). The tensile strengths were measured for the selected rock anchors taken every 3 months from the salt spray corrosion chambers maintained at different pH values and temperatures. The corrosion potential (Ecorr), corrosion current (Icorr) and the corresponding corrosion rates (CR) of the selected commercial rock bolts: #5, #6, #6 epoxy coated and #7 forged head rebar steels, #6 and #7 threaded head rebar steels were measured at the solution pH values of 5 and 8 at room temperature. The open circuit potential (OCP) values of the different rock anchors were recorded in 3 selected underground coal mines (A, B & C) in the Illinois coal basin and the data compared with the laboratory electrochemical tests for analyzing the life of the rock anchors installed in the mines with respect to corrosion potential and corrosion current measured. The results of this research were statistically validated. This research will have direct consequence to the rock related safety. The results of this research indicate that certain corrosive conditions are commonly found in mines but uniform corrosion (around 0.01-0.03mm loss per year across the diameter) is generally not considered a serious issue. From this study, longer term research for long-term excavation support is recommended that could quantify the problem depending on the rock anchor used and specific strata conditions.




This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.