Date of Award


Degree Name

Master of Science



First Advisor

Ali, Naushad


The impact of B substitution in Ni50Mn35In15-xBx Heusler alloys with x = (0, 0.5, 0.75, 1, 1.1 1.5, and 2) on the structural, magnetic, transport, and parameters of magnetocaloric effect has been studied by means of room temperature XRD-diffraction, differential scanning calorimetry (DSC), and thermomagnetic measurements (in a magnetic field up to 5 T and temperature interval 5-400 K). Direct adiabatic temperature (ΔTAD) measurements have been carried out for an applied magnetic field change (ΔH) of 1.8 T. The partial substitution of In by B in Ni50Mn35In15-xBx Heusler alloys induced a non-linear temperature shift of the magnetostructural transition while Curie temperature (TC) was found to be nearly constant (TC ~ 320 K) for all compounds. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be larger or comparable to parameters observed in other MCE materials, such as Ni50Mn34.8In14.2B and Ni50Mn35In14X (X=In, Al, and Ge) Heusler alloys. It has been demonstrated that the martensitic transformation temperature and the corresponding ∆SM can be tuned through a slight variation in composition of B in NiMnInB alloys. A magnetoresistance associated with martensitic transformation was found to be -60% for x = 0.75 at T = 240 K for a magnetic field change of 5 T. The maximum absolute value of ΔTAD = 2.5 K was observed at the magnetostructural transition for Ni50Mn35In14.5B0.5. The roles of the magnetic and structural changes on the transition temperatures are discussed.




This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.