Published in Journal of Agricultural Science, Vol. 5 No. 11 (2013) at doi:10.5539/jas.v5n11p20


Seed isoflavone content of soybean (Glycine max L. Merr.) is a trait of moderate heritablity and an ideal target for marker selection. To date over 20 QTL have been identified underlying this trait among seven populations. The objectives of this study were to identify additional QTL and candidate genes controlling isoflavone content in a set of recombinant inbred line (RIL) populations of soybean grown in two different seasons. Variations of isoflavones namely daidzein, glycitein and genistein contents over two growing seasons and locations suggests that isoflavones are influenced by both genes and environments. Six QTL were identified on five different chromosomes (Chr) or linkage groups (LG) that controlled daidzein (Chr_2/LG-M; Chr_17a/LG-D2), glycitein (Chr_2/LG-D1b; Chr_8/LG-A2) and genistein (Chr_8/LG-A2; Chr_12/LG-H) respectively in the seeds grown in season 2010. Two QTL were identified for daidzein (Chr_6/LG-C2; Chr_13b/LG-F), two QTLs for glycitein (Chr_1/LG-D1a; Chr_17c/LG-D2) and five QTLs for genistein (Chr_3/ LG-N; Chr_8/LG-A2; Chr_9/LG-K; Chr_18/LG-G) in the seeds of the 2011 growing season. Genes located within QTL confidence intervals were retrieved and gene ontology (GO) terms were used to identify those related to the flavonoid biosynthesis process. Twenty six candidate genes were identified that may be involved in isoflavones accumulation in soybean seeds.