Comments

Published in Tall, I. A., & Respondek, W. (2005). Smooth and analytic normal and canonical forms for strict feedforward systems. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05, v 2005, 4213-4218. ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Abstract

Recently we proved that any smooth (resp. analytic) strict feedforward system can be brought into its normal form via a smooth (resp. analytic) feedback transformation. This will allow us to identify a subclass of strict feedforward systems, called systems in special strict feedforward form, shortly (SSFF), possessing a canonical form which is an analytic counterpart of the formal canonical form. For (SSFF)-systems, the step-by-step normalization procedure of Kang and Krener leads to smooth (resp. convergent analytic) normalizing feedback transformations. We illustrate the class of (SSFF)-systems by a model of an inverted pendulum on a cart.