Published in Ramamoorthy, S., Wang, H., & Vrudhula, S. (2008). A low-power double-edge-triggered address pointer circuit for FIFO memory design. 9th International Symposium on Quality Electronic Design, 2008 (ISQED 2008), 123-126. doi: 10.1109/ISQED.2008.4479711 ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


This paper presents a novel design of address pointer for FIFO memory circuits. Advantages of the proposed design include: reduced capacitive load on the pointer clock path, the use of a true single-phase clock, and double- edge-triggering clock scheme. The circuit has low power consumption, is immune to circuit racing conditions and suitable for high-speed operations. Techniques to implement clock gating in pointer circuit design for further reducing power consumption are also discussed. The proposed circuit is implemented with a 65 nm CMOS technology and its performance is compared with previous pointer circuits.