Date of Award
8-1-2013
Degree Name
Doctor of Philosophy
Department
Mathematics
First Advisor
Schurz, Henri
Abstract
We introduce random fluctuations on contact and recovery rates in three basic deterministic models in mathematical epidemiology and obtain stochastic counterparts. This paper addresses qualitative and quantitative analysis of stochastic SIS model with disease deaths and demographic effects, and stochastic SIR models with/without disease deaths and demographic effects. We prove the global existence of a unique strong solution and discuss stochastic asymptotic stability of disease free and endemic equilibria. We also investigate numerical properties of these models and prove the convergence of the Balanced Implicit Method approximation to the analytic solution. We simulate the models with fairly realistic parameters to visualize our conclusions.
Access
This dissertation is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.