Date of Award

5-1-2013

Degree Name

Doctor of Philosophy

Department

Plant Biology

First Advisor

Baer, Sara

Abstract

The overall objective of this study was to quantify the effects of dominant grass propagule source (i.e., cultivar vs. non-cultivar) and seeded diversity of propagules on community structure and ecosystem function during prairie restoration. Two field experiments, and two chronosequences were used to investigate this main objective. The two field experiments were established at the same latitude separated by 620 km (corresponding to a precipitation gradient from eastern Kansas to western Illinois), and consisted of a split plot design, with dominant grass source as the whole-plot factor (2 levels) and seeded dominance of grasses as the subplot factor (5 levels). Percent cover of each species in each treatment combination was quantified during the first five years of restoration. Total plant species richness and diversity were not adversely affected by cultivars in Kansas or Illinois. The effect of the dominant grass population source on the cover of focal grasses, planted species, and volunteer species were contingent upon location. By the fifth year of restoration, diversity and richness were greatest, and cover of volunteer species was lowest in the low grass dominance (i.e., high diversity) treatment. ANPP, as well as total, microbial, and mineralizable pools of C and N were measured to quantify ecosystem function in these two field experiments. Changes in ecosystem function in Kansas and Illinois were primarily driven by time and regional abiotic differences, not propagule source or seeded diversity. The effect of plant species diversity on ecosystem function was further investigated at a landscape scale by developing and sampling two chronosequences of high (HDC; n=20) and low diversity (LDC; n=15) prairies spanning over two decades of restoration in northwestern Illinois. In general most metrics of ecosystem function in both chronosequences moved towards levels measured in remnant prairies. While the constituent prairies of the HDC had higher species richness, diversity, and more rapidly increasing root biomass than the fields of the LDC, recovery of other important ecosystem functions including aboveground net primary productivity, total, microbial, and mineralizable soil C, and soil aggregate mean weighted diameter were achieved equally well with either high or low diversity prairie plantings.

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.