Date of Award

8-1-2017

Degree Name

Doctor of Philosophy

Department

Electrical and Computer Engineering

First Advisor

Hsieh, Cheng-Liang

Abstract

Service Function Chaining (SFC) enriches the network functionalities to fulfill the increasing demand of value-added services. By leveraging SDN and NFV for SFC, it becomes possible to meet the demand fluctuation and construct a dynamic SFc. However, the integration of SDN with NFV requires packet header modifications, generates excessive network traffics, and induces additional I/O overheads for packet processing. These additional overheads result in a lower system performance, scalability, and agility. To improve the system performance, a co-optimized solution is proposed to implemented NF to achieve a better performance for software-based network functions. To improve the system scalability, a many-field packet classification is proposed to support a more complex ruleset. To improve the system agility, a network function-enabled switch is proposed to lower the network function content switching time. The experiment results show that the performance of a network function is improved by 8 times by leveraging GPU as a parallel computation platform. Moreover, the matching speed to steer network traffics with many-field ruleset is improved by 4 times with the proposed many-field packet classification algorithm. Finally, the proposed system is able to improve system bandwidth 5 times better compared the native solution and maintain the content switch time with the proposed SFC implementation using SDN and NFV.

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.