Date of Award


Degree Name

Master of Science


Molecular Biology Microbiology and Biochemistry

First Advisor

Rusch, Antje


Floodplain lakes are wetlands which receive flood waters from nearby rivers or other sources. Water samples were taken from floodplain lakes near the Illinois River, the Mississippi River, and the Cache River in Southern Illinois. Fluorescence in situ hybridization (FISH), spectrophotometry, and gene probes were used to investigate the effect of nutrient and chemical concentrations on the abundance of nitrifying bacteria; specifically ammonia-oxidizing Nitrosococcus and Nitrosomonadales and nitrite-oxidizing Nitrospira and Nitrobacter. Nitrosococcus was the dominant ammonia-oxidizing bacteria at each river system. Nitrospira and Nitrobacter had similar average abundances. Nitrosococcus abundances showed a significant positive correlation with nitrate (NO3-) (R2= 0.247, P=0.05, 95% confidence R2≥0.199) and a positive trend with nitrite (NO2-) (R2= 0.194, P=0.10, 90% confidence R2≥0.125). Nitrosomonadales abundance positively correlated with temperature (R2= 0.530, P=0.05, 95% confidence R2≥0.510). Nitrospira abundances positively correlated with ammonium (NH4+) (R2= 0.265, P=0.05, 95% confidence R2≥0.199), NO2- (R2= 0.372, P=0.05, 95% confidence R2≥0.199), and NO3- (R2= 0.482, P=0.05, 95% confidence R2≥0.199). None of the target bacterial abundances significantly correlated with pH or dissolved inorganic phosphate.




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.