Date of Award


Degree Name

Master of Science


Computer Science

First Advisor

Ahmed, Khaled


Every year, drivers are spending over 3 billions to repair damage on vehicle caused by potholes. Along with the financial disaster, potholes cause frustration in drivers. Also, with the emerging development of automated vehicles, road safety with automation in mind is being a necessity. Deep Learning techniques offer intelligent alternatives to reduce the loss caused by spotting pothole. The world is connected in such a way that the information can be shared in no time. Using the power of connectivity, we can communicate the information of potholes to other vehicles and also the department of Transportation for necessary action. A significant number of research efforts have been done with a view to help detect potholes in the pavements. In this thesis, we have compared two object detection algorithms belonging to two major classes i.e. single shot detectors and two stage detectors using our dataset. Comparing the results in the Faster RCNN and YOLOv5, we concluded that, potholes take a small portion in image which makes potholes detection with YOLOv5 less accurate than the Faster RCNN, but keeping the speed of detection in mind, we have suggested that YOLOv5 will be a better solution for this task. Using the YOLOv5 model and image processing technique, we calculated approximate area of potholes and visualized the shape of potholes. Thus obtained information can be used by the Department of Transportation for planning necessary construction tasks. Also, we can use these information to warn the drivers about the severity of potholes depending upon the shape and area.




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.