Date of Award


Degree Name

Master of Science


Biomedical Engineering

First Advisor

Bae, Chilman


Opioids are gold-standard analgesics for pain relief in chronic pain conditions. Paradoxically, chronic opioid use causes an enhanced pain sensitivity termed ‘Opioid-induced hyperalgesia’ (OIH). OIH is a clinically relevant problem associated with the use of opioids. In addition to decreasing quality of life, increased pain from OIH necessitates increasing dosages of analgesics to effectively control the pain, resulting in an increased risk of opioid epidemics, addiction, and overdose. To prevent this clinically important effect, it is necessary to understand how chronic opioid use causes hyperalgesia. Our preliminary studies revealed that synaptic plasticity in the spinal dorsal horn (SDH) is dependent on neuron type in the OIH model and occurs concurrently with hyperalgesia, suggesting central sensitization as a mechanism of OIH. We found that astrocyte ablation blocked mechanical hyperalgesia and neuron type-dependent synaptic plasticity, indicating that astrocytes are critically involved in OIH. Additionally, morphine treatment upregulated IL-1β expression in the SDH in our preliminary experiments. Inhibition of IL-1β prevented OIH and blocked the repeated morphine-induced synaptic plasticity in the SDH, suggesting IL-1β is a key player in the pathogenesis of OIH. Astrocytes and other glial cells are critical in the development and maintenance of neuroinflammatory conditions, such as OIH, through the release of proinflammatory cytokines (PICs), including IL-1β. The mechanosensitive ion channel, Piezo1, was recently found to be upregulated in astrocytes and microglia under LPS-induced inflammatory conditions, and activation of Piezo1 was found to reduce IL-1β expression in LPS-inflamed primary mouse astrocytes. The goal of this study was to investigate the function of Piezo1 as a potential treatment for neuroinflammatory diseases of the CNS in a model of LPS-induced inflammation. In this study, we created a culture cell model of LPS-induced astrocytic neuroinflammation using the C8-S type II astrocyte culture cell line. We used a multi-disciplinary approach of electrophysiology and imaging to assess changes in calcium flux induced by the selective Piezo1 agonist, Yoda1, and mechanosensitive ion channel activity in the LPS-stimulated C8-S culture astrocytes. We found that calcium flux is increased in LPS stimulation and augmented by additional Yoda1 treatment. We also found that LPS stimulation increases mechanosensitive ion currents and stiffens cell membranes using patch-clamp electrophysiology techniques. These results indicate that Piezo1 is likely upregulated in the LPS model of cultured astrocytes, thus mechanosensitive responses are increased. Results from these experiments reveal key information about the mechanical properties of Piezo1 and poise Piezo1 as a promising therapeutic for OIH and other neuroinflammatory diseases caused by astrocytic IL-1β release.




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.