Date of Award


Degree Name

Master of Science



First Advisor

Samadi, Seyed


Many real data are naturally represented as a multidimensional array called a tensor. In classical regression and time series models, the predictors and covariate variables are considered as a vector. However, due to high dimensionality of predictor variables, these types of models are inefficient for analyzing multidimensional data. In contrast, tensor structured models use predictors and covariate variables in a tensor format. Tensor regression and tensor time series models can reduce high dimensional data to a low dimensional framework and lead to efficient estimation and prediction. In this thesis, we discuss the modeling and estimation procedures for both tensor regression models and tensor time series models. The results of simulation studies and a numerical analysis are provided.




This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.