Published in Qin, X., & Berry, R. (2004). Opportunistic splitting algorithms for wireless networks. INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 1662 - 1672. doi: 10.1109/INFCOM.2004.1354578 ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


In this paper, we develop medium access control protocols to enable users in a wireless network to opportunistically transmit when they have favorable channel conditions, without requiring a centralized scheduler. We consider approaches that use splitting algorithms to resolve collisions over a sequence of mini-slots, and determine the user with the best channel. First. we present a basic algorithm for a system with i.i.d. block fading and a fired number of backlogged users. We give an analysis of the throughput of this system and show that the average number of mini-slots required to find the user with the best channel is less than 2.5 independent of the number of users or the fading distribution. We then extend this algorithm to a channel with memory and also develop a reservation based scheme that offers improved performance as the channel memory increases. Finally we consider a model with random arrivals and propose a modified algorithm for this case. Simulation results are given to illustrate the performance in each of these settings.