Promising Phytochemicals from Indian Medicinal Plants

Dr. Amrit Pal Singh
MD (Alternative Medicine), Medical Executive, Ind-Swift Ltd, Chandigarh (India)

Address for correspondence:
Amrit Pal Singh
House No. 2101, Phase-7, Mohali-160062
Email: amritpal2101@yahoo.com

Issued 16 May 2005

Abstract
The medicinal plants find application in pharmaceutical, cosmetic, agricultural and food industry. The use of the medicinal herbs for curing disease has been documented in history of all civilizations. With the onset of research, it was concluded that plants contain active principles, which are responsible, for curative action of the herbs. Ayurvedic drugs are used in crude forms like expressed juice, powder, decoction or infusion. Ancient healers, developed formulations based on medicinal herbs, were probably not aware about the chemical composition of the herbs. But the advancement they made despite non-availability of scientific procedures is astonishing. Scientific research has proved the utility of time tested remedies. The article reviews work done on isolated constituents of rare Indian medicinal plants.

Key Words: Ayurveda/ alkaloids/glycosides/medicinal herbs.

Introduction
Medicinal herbs are significant source of synthetic and herbal drugs. In the commercial market, medicinal herbs are used as raw drugs, extracts or tinctures. Isolated active constituents are used for applied research. For the last few decades, phytochemistry (study of plants) has been making rapid progress and herbal products are becoming popular.

Ayurveda, the ancient healing system of India, flourished in the Vedic era in India. According to historical facts, the classical texts of Ayurveda, Charaka Samhita and Sushruta Samhita were written around 1000B.C. The Ayurvedic Materia Medica includes 600 medicinal plants along with therapeutics. Herbs like turmeric, fenugreek, ginger, garlic and holy basil are integral part of Ayurvedic formulations. The formulations incorporate single herb or more than two herbs (poly-herbal formulations).

Medicinal herb is a considered to be a chemical factory as it contains multitude of chemical compounds like alkaloids, glycosides, saponins, resins, oleoresins, sesquiterpene lactones and oils (essential and fixed). Today there is growing interest in chemical composition of plant based medicines. Several bioactive constituents have been isolated and studied for pharmacological activity.
Clausena anisata

Clausenol (carbazole alkaloid) isolated from *Clausena anisata* has shown antibacterial activity. The phytochemical was found to be active against bacteria and fungi.

Ceropegia juncea

Cerpegin (a furopyridine alkaloid) from *Ceropegia juncea* has shown analgesic effect against acetic acid induced writhing in mice.

Sarcocca pruniformis

Saracocine reported from *Sarcocca pruniformis* has not been investigated for pharmacological activity.

Tylophora asthamatica

Experiments conducted with Tylpohorine (has phenanthroindalizidine framework) in various animal models have shown significant anti-inflammatory, anti-anaphylactic and anti-spasmodic activites. Pre-treatment with Tylophora asthamatica prevented bronchospasm induced by Freund’s adjuvant and bovine albumin in rats. The same researchers observed that the plant extract produced muscle relaxant activity, antagonism of smooth muscle stimulants and immunosupressive effects in different species.

![Structure of Tylophorine](image)

Swertia chirata

Amarogentin, bitter principle of *Swertia chirata* (chirata) has anti-leishmanial activity.²⁷
Swerchin, xanthone from *Swertia chirayita* (*Chirata*) has antidiabetic activity. Researchers compared the effects of mode of action of three different hypoglycemic agents; centipiperalon, tolbutamide and swerchinin in normal as well as diabetic rats. Except in rats with severe pancreatic damage, swerchinin showed better glucose lowering effect compared to tolbutamide.

Hibiscus vitofolius

Gossypin from *Hibiscus vitofolius* (*Japa*) has anti-nociceptive activity similar to opium alkaloids and involving multineurotransmitter systems. It acts through cholinergic and GABAergic pathways. It seems to have potential analgesic activity with free from tolerance and dependence.

Sophora japonica

Rutin, a bioflavonoid isolated from *Sophora japonica* reduced the infract size and prevented the loss of the R wave in anaesthetized rats subjected to coronary artery ligation. The drug however not affected the heart rate and systolic blood pressure. The cardio protective action of the drug is assumed due to antioxidant activity of rutin.

Abies pindrow

Extracts of *Abies pindrow* demonstrated anti-inflammatory activity in various models of inflammation such as carrageenin induced paw oedema, granuloma pouch and Freund’s adjuvant arthritis. Chemical analysis indicated
presence of glycosides, terpenoids and flavonoids. The flavonoids are terpenoids are effective in acute inflammation and glycosides are effective in chronic inflammation.

Thevetia nerifolia

Thevetin, a glycoside from *Thevetia nerifolia (Karvira)* has digitalis like activity.\(^{36}\)

Plumbago rosea

In animal studies, plumbagin, napthoquinone from *Plumbago rosea* (Chitraka) has shown anti tumour activity. The antitumour and radimodifying properties of plumbagin were tested on mouse Ehrlich ascites carcinoma. Plumbagin produced inhibition of exponentially growing tumours. When radiation was combined with plumbagin, mouse survival was increased by 120 days. However mode of action of anti cancer activity of plumbagin remains unclear.

![Structure of Plumbagin](image)

Curcuma longa

Curcumin from *Curcuma longa (Haridra)* has antioxidant, anti-inflammatory, anti cancer, and hepatoprotective. The pharmacological activities of cucrcumnoids are due to unique molecular structure.

Aegle marmelos

Luvangetin, pyranocoumarin from *Aegle marmelos (Bilva)*, has shown potent gastroproective activity. It gave significant protection against pylorus ligation and aspirin induce gastric ulcers in rats and cold restraint-induced gastric ulcers in rats and guinea pigs.

Nelumbo nucifera
Methanolic extract of *Nelumbo nucifera* rhizome and betulinic acid, a triterpene isolated from the plant demonstrated significant anti-inflammatory activity when tested in carrageenin and 5-hydroxytryptamine induced paw edema. The activity was comparable to betamethasone and phenylbutazone.

![Structure of Betulinic acid](image)

Crateva nurvala

Lupeol and other chemical constituents from *Crateva nurvala* possessed significant anti-hyperxaluric and anti-hypercalcuric activity when tested in rats against hydroxyproline induced hyperoxaluria and calciuria.

Rubia cordifolia

Rubidianin, an anthraquinone isolated from alcoholic extract of *Rubia cordifolia* has demonstrated significant antioxidant activity as it prevented lipid peroxidation induced by ferrous sulphate and t-butylhydroperoxide. The drug depicted activity in dose-dependent manner. The anti-oxidant activity of rubidianin was found to be better than mannitol, vitamin e and p-benzoquinone.

Boswellia serrata

Boswellic acid, from *Boswellia serrata* (*Salai guggul*) has anti-inflammatory and immunomodulator. *Boswellia serrata* is widely prescribed in the treatment of osteoarthritis, rheumatoid arthritis and bronchial asthma.

Elephantus scaber

Elephantopin from *Elephantus scaber* (*Gojihva*) has activity against the P388A mouse leukemia. Recently leaves of Elephantopus scaber have been investigated against Dalton’s ascitic lymphoma in animal models.
Cedrus deodara

Himachalol from Cedrus deodara (Deodara) has shown potent anti-allergic activity.

Nardostachys jatamansi

Jatamansin from Nardostachys jatamansi (Jatamansi) has shown tranquillizing activity.

Butea monosperma

Palasonin from Butea monosperma inhibited glucose uptake and depleted the glycogen content in Ascaridia galli.

Eclipta alba

Wedelolactone and demethylwedelolactone from Eclipta alba (Bhringraja) have potent trypsin inhibitory effect.

Conclusion: With onset of scientific research in Ayurvedic system of medicine, it is becoming clearer that the medicinal herbs have a potential in today’s synthetic era, as numbers of medicines are becoming resistant. According to one estimate only 20% of the plant flora has been studied and 60% of synthetic medicines owe their origin to plants. Ancient knowledge coupled with scientific principles can come to the forefront and provide us with powerful remedies to eradicate the diseases.

References:

18. Chopra RN, Chopra IC. Handa KK and Kapur LD. Indigenous Drugs of India, 2nd ED, M/S U. N. Dhar & Sons Ltd. Calcutta,
20. Watt, Dict. of Chem. viii. 1807.
31. Saraswat B, Visen PK, Patnaik GK, Dhawan BN. (997) Protective effect of picroliv, active constituent of
Picrorhiza kurrooa, against oxytetracycline induced hepatic damage. ICMR Centre for Advanced Pharmacological Research on Traditional Remedies, Central Drug Research Institute, Lucknow, India. Indian J Exp Biol. Dec; 35(12): 1302-5.

51. Stough C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, Nathan PJ. The chronic effects of an extract of Bacopa monniera on cognitive function in healthy human subjects. *Neuropsychology Laboratory, School of Biophysical Science and Electrical Engineering, Victoria, Australia.*

