The Structural and Magnetic Properties of Ni2Mn1–xMxGa (M = Co, Cu)

Mahmud Khan
Southern Illinois University Carbondale

Igor Dubenko
Southern Illinois University Carbondale

Shane Stadler
Southern Illinois University Carbondale

Naushad Ali
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/phys_pubs
© 2005 American Institute of Physics

Recommended Citation

This Article is brought to you for free and open access by the Department of Physics at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
The structural and magnetic properties of Ni₂Mn₁₋ₓMₓGa (M=Co, Cu)

Mahmud Khan, a Igor Dubenko, Shane Stadler, and Naushad Ali

Department of Physics, Southern Illinois University, Carbondale, Illinois 62901

(Submitted on 8 November 2004; published online 13 May 2005)

In Ni₂MnGa (cubic structure of L2₁ type) a first order martensitic structural transition, from the parent cubic (austenitic) phase to a low temperature complex tetragonal structure, takes place at \(T_M = 202 \text{ K} \), and ferromagnetic order in the austenitic phase sets at \(T_C = 376 \text{ K} \). In this work, the Mn sites in Ni₂MnGa have been partially substituted with magnetic Co and nonmagnetic Cu, and the influence of these substitutions on the structural and magnetic properties of Ni₂Mn₁₋ₓMₓGa (M = Co and Cu) have been studied by XRD and magnetization measurements. X-ray diffraction patterns indicate that the Co doped system possess a highly ordered Heusler alloy L₂₁ type structure for \(0.05 < x < 0.12 \), and the Cu doped compounds possess L₂₁ structure for \(0.05 < x < 0.10 \). The ferromagnetic ordering temperature increases with increasing Co concentration for this system, and rapidly decreases with increasing Cu concentration. Both systems show the increase in \(T_M \) with increasing Co and Cu concentration. \((T-x) \) phase diagrams have been plotted. The results are discussed in terms of 3d-electron concentration variation. © 2005 American Institute of Physics.

[DOI: 10.1063/1.1847131]

INTRODUCTION

Stoichiometric Ni₂MnGa has an L₂₁ crystal structure at room temperature. In this alloy a first-order martensitic structural transition, from the parent cubic (austenitic) phase to a low temperature (LT) complex tetragonal structure, takes place at \(T_M = 202 \text{ K} \), and ferromagnetic order sets in at \(T_C = 376 \text{ K} \). A steplike variation of the magnetization, magnetic susceptibility, magnetostriiction, and resistivity has been observed in this system at the martensitic transition. Positive and negative volume anomalies were also found to accompany the transitions from ferromagnetic austenitic and para-magnetic austenitic to martensitic phases, respectively. The values of \(T_M \) and \(T_C \) vary significantly with the chemical composition. The partial substitution of Mn with Ni results in an increase of \(T_M \) and a decrease of \(T_C \) and, at some critical concentration, \(T_M \) and \(T_C \) coincide. On the other hand, substituting Mn with Fe results in a decrease of \(T_M \) and an increase of \(T_C \). The increase of \(T_C \) with increasing pressure was found in Mn containing Heusler alloys from hydrostatic pressure experiments.

It was conjectured that the Heusler structure is stabilized because the Fermi surface barely touches the (110) Brillouin-zone boundary. Recently it was suggested that a band Jahn–Teller effect accompanies the martensitic transformation and the model was confirmed by polarized neutron scattering experiments, where the transfer of magnetic moment from Mn to Ni was found in the martensitic phase. Thus the magnetic and structural properties of Ni₂MnGa are strongly dependent on internal parameters such as interatomic distances, stoichiometry, density of 3d electron states, concentration of conduction electrons, and \(d-d \) exchange interaction.

Although it has been a subject of attraction during the last few years, many aspects of the behaviors of Ni₂MnGa are not clearly understood. The relative contributions of internal parameters to property variations of Ni₂MnGa based alloys are not sufficiently clarified. Because of the band character of the magnetism, the magnetic characteristics of Heusler alloys are determined by the density of \(d \)-states at the Fermi level and by the exchange splitting parameter, and depend on the material’s structure and composition. Therefore, in most cases of the Ni or Mn subsystem doped alloys, several parameters are varied.

This work was undertaken to study the structural and magnetic properties of the Ni₂MnGa system by the substitution of Mn by magnetic Co and nonmagnetic Cu. The system has been studied with respect to temperature and composition by XRD and magnetization measurements.

EXPERIMENTAL PROCEDURE

5–7 gm of stoichiometric polycrystalline ingots of Ni₂Mn₁₋ₓMₓGa (M=Co, Cu; \(0.0 \leq x \leq 0.25 \)) were prepared by conventional arc melting in an argon atmosphere using high purity Ni, Mn, Co, Cu, and Ga. The weight loss after melting was found to be less than 0.3 percent. For homogenization, the samples were annealed in vacuum for 72 hours at 900 °C, and slowly cooled down to room temperature.

X-ray diffraction measurements were conducted at room temperature for phase identification and lattice constant determination. The measurements were done on a GBC MMA (Mini Materials Analyzer) x-ray diffractometer that used Cu–K alpha radiation and Bragg–Brentano geometry.

The magnetization measurements were performed on a superconducting quantum interference device (SQUID) made by Quantum Design, Inc. The measurements were performed in a temperature range of 5–400 K and magnetic field of up to 55 kOe.
RESULTS AND DISCUSSION

The (220) peak of the powder x-ray diffraction patterns (XRD) of Ni$_2$Mn$_{1-x}$M$_x$Ga (M=Co, Cu; x=0.05, 0.10, 15, 0.25) system at room temperature are shown in Fig. 1. Both the cobalt and the copper doped systems with 0.00 ≤ x ≤ 0.10 possess the L2$_1$ Heusler structure at room temperature. For the cobalt doped system, a distortion in the peak appears at x=0.15 and the peak splits into two for x=0.25. There is an apparent similarity between the copper system with x=0.25 and the cobalt system with x=0.15. The splitting of the XRD peaks could be due to the existence of multiple phases in the Ni$_2$Mn$_{1-x}$M$_x$Ga system (M=Co, Cu) for x>0.10. Another possibility could be that the systems with x>0.10 do not possess the L2$_1$ structure at room temperature. The second reason is more sensible as from the magnetization versus temperature measurements (Figs. 2 and 3) no second phase is observed to be present in the system.

Figure 2 shows the magnetization versus temperature, M(T), curves of the system Ni$_2$Mn$_{1-x}$Co$_x$Ga (x=0.00, 0.05, 0.08, 0.1, 0.12, 0.15, and 0.25). A gradual increase of both T_M and T_C is observed with increasing Co concentration. For x=0.15, the value of T_M is 293 K, which is very close to room temperature. Therefore, the distortion of the XRD peak of the Ni$_2$Mn$_{1-x}$Co$_x$Ga system with x=0.15 (see Fig. 1) could be due to the fact that the system is in the early stage of the martensitic phase. For x=0.25 we do not see any martensitic transformation in the magnetization versus temperature...
The M system has more system, and hence, the increase of T_M results in an increase of concentration in Ni$_2$Mn$_{1-x}$Ga systems, with increasing Cu concentration, T_M increases gradually whereas substitution of 5 percent of Co on the Mn sites in Ni$_2$Mn$_{1-x}$Ga results in a decrease of T_M and T_C coincides with each other.

Substitution of Co on the Mn sites in Ni$_2$Mn$_{1-x}$Co$_x$Ga systems results in an increase of Co concentration in the Ni$_2$Mn$_{1-x}$Co$_x$Ga systems, with increasing Cu concentration, T_M increases gradually whereas substitution of 5 percent of Co on the Mn sites in Ni$_2$Mn$_{1-x}$Co$_x$Ga results in a decrease of T_M and T_C coincides with each other.

Acknowledgment

This work was supported by the Consortium for Advanced Radiation Sources, University of Chicago.