Modification of water application uniformity among closed circuit trickle irrigation systems

Hani A.-G. Mansour
Mohamed Yousif Tayel
Mohamed A. Abd El-Hady
David A. Lightfoot

Southern Illinois University Carbondale, ga4082@siu.edu

Abdel-Ghany Mohamed El-Gindy

Follow this and additional works at: http://opensiuc.lib.siu.edu/psas_articles

Recommended Citation

This Article is brought to you for free and open access by the Department of Plant, Soil, and Agricultural Systems at OpenSIUC. It has been accepted for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
Modification of water application uniformity among closed circuit trickle irrigation systems

Hani A.-G. Mansour1*, Mohamed Yousif Tayel1, Mohamed A. Abd El-Hady1, David A. Lightfoot2, Abdel-Ghany Mohamed El-Gindy3

1Water Relations and Field Irrigation Department, National Research Centre, Giza, Egypt; *Corresponding Author: hanimansour88@yahoo.com
2Soil & Plant and Agricultural Systems Department, Southern Illinois University, Carbondale, USA
3Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

Received 2 April 2010; revised 30 April 2010; accepted 5 May 2010.

ABSTRACT

The aim of this research was to determine the maximum application uniformity of closed circuit trickle irrigation systems designs. Laboratory tests carried out for two types of closed circuits: a) One manifold for lateral lines or Closed Circuits with One Manifold of Trickle Irrigation System (COMTIS); b) Closed circuits with Two Manifolds of Trickle Irrigation System (CTMTIS), and c) Traditional Trickle Irrigation System (TTIS) as a control. Three lengths of lateral lines were used, 40, 60, and 80 meters. PE tubes lateral lines: 16 mm diameter; 30 cm emitters distance, and GR built-in emitters 4 lph when operating pressure 1 bar. Experiments were conducted at the Agric. Eng. Res. Inst., ARC, MALR, Egypt. With COMTIS the emitter flow rate was 4.07, 3.51, and 3.59 lph compared to 4.18, 3.72, and 3.71 lph with CTMTIS and 3.21, 2.6, and 2.16 lph with TTIS (lateral lengths 40, 60, and 80 meters respectively). Uniformity varied widely within individual lateral lengths and between circuit types. Under CTMTIS uniformity values were 97.74, 95.14, and 92.03 %; with COMTIS they were 95.73, 89.45, and 83.25 %; and with TTIS they were 88.27, 84.73, and 80.53 % (for lateral lengths 40, 60, 80 meters respectively). The greatest uniformity was observed under CTMTIS and COMTIS when using the shortest lateral length 40 meters, then lateral length 60 meters, while the lowest value was observed when using lateral length 80 meters this result depends on the physical and hydraulic characteristics of the emitter and lateral line. CTMTIS was more uniform than either COMTIS or TTIS. Friction losses were decreased with CTMTIS in the emitter laterals at lengths 40 meters compared to TTIS and COMTIS. Therefore, differences may be related to increased friction losses when using TDIS and COMDIS.

Keywords: Trickle Irrigation; Closed Circuits; Manifold; Lateral; Flow Rate; Uniformity

1. INTRODUCTION

Trickle irrigation has been used since ancient times when buried clay pots were filled with water, which would gradually seep into the grass. Perforated pipe was introduced in Germany in the 1920s and in 1934, Nobey experimented with irrigating through porous canvas hose at Michigan State University. Plastic microtubing and various types of emitters began to be used in the greenhouses of Europe and the United States. Qualitative classification standards for the production of emitters, the emitter discharge rate q (m³/h) has been described by a power law, \(q = kH^x \), where operating pressure head H (m), emitter coefficient (k), and exponent (x) depend on emitter characteristics [1]. Capra and Scicolone [2] indicated that the major sources of emitter flow rate variations are emitter design, the material used to manufacture the lateral line, and precision. According to [3] the main factors affecting trickle irrigation system uniformity are: 1) manufacturing variations in emitters and pressure regulators, 2) pressure variations caused by elevation changes, 3) friction head losses throughout the pipe network, 4) emitter sensitivity to pressure and irrigation water temperature changes, and 5) emitter clogging. Similarly, according to the manufacturer’s coefficient of emitter variation (CV\(_m\)), have been developed by ASAE. CV\(_m\) values below 10% are suitable and > 20% are unacceptable [4]. The emitter discharge variation rate (q\(_{var}\)) should be evaluated as a design criterion in trickle irrigation systems; q\(_{var}\) < 10% may be regarded as good and q\(_{var} > 20%\) as unacceptable [5,6]. The acceptability of micro-irrigation systems has also been classified accord-
3) To compare emitter discharge uniformity between tow type of closed circuits (COMTIS and CTMTIS) and traditional trickle system (TTIS).

2. MATERIALS AND METHODS

2.1. Site Location and Experimental Design

This experiment was conducted at Irrigation Devices and Equipments Tests Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Cairo, Egypt. The experimental design was randomized complete block with three replicates. Three irrigation new lateral lines 40, 60, 80 m long that were installed at constant level and under ten operating pressures 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 bar for ten minutes at each pressure. Details of the pressure and water supply control have been described by [14], to evaluate the Built-in Dripper (GR), discharge, 4 lph design emitter spacing of 30 cm at 1 bar nominal operating pressure in order to reach an modified way to resolve the problem of lack of pressure at the end of lateral lines in the traditional trickle irrigation system.

2.2. Trickle Irrigation Components

The components of closed circuits the trickle system include, supply lines, control valves, supply and return manifolds, trickle lateral lines, trickle emitters, check valves and air relief valves/vacuum breakers. Figures 1 and 2 show the closed circuits of trickle irrigation system: 1) Closed circuit with Tow Manifold of trickle Irrigation System (CTMTIS) and 2) Closed circuit with One Manifold of trickle Irrigation System (COMTIS) while Figure 3 is 3) Traditional of Trickle Irrigation System (TTIS). Supply lines provide water to the supply manifolds of the system after passing through the zone control valve in systems with more than one zone. The supply manifold distributes water to the individual trickle laterals within the zone. The laterals then connect to a return manifold. Along the supply and return manifold, air relief/vacuum breakers are installed at the highest point of the manifolds to allow air to enter the system during depressurization [15]. The return manifold is used during system flushing to collect water from the laterals and carry it to the return line which returns to the pre-treatment device. Prior to connecting the return manifold to the return line a check valve is installed to prevent water from entering the zone during the operation of other zones.

\[q_{var} = \frac{q_{max} - q_{min}}{q_{max}} \] \hspace{1cm} (1)

\[CV = \frac{S}{q} \] \hspace{1cm} (2)

\[UC = \frac{\sum_{i=1}^{n} q_i - \bar{q}}{\bar{q}} \] \hspace{1cm} (3)

where:

Copyright © 2010 SciRes.
Openly accessible at http://www.scirp.org/journal/as/
Figures 1-3 illustrate the layout of the different trickle irrigation systems: Closed circuit with two manifolds (CTMTIS), closed circuit with one manifold (COMTIS), and traditional trickle irrigation system (TTIS).

q_{max} and q_{min} are the maximum and minimum emitter discharge, respectively. \bar{q} and S are the mean and standard deviation, respectively, of discharge (q), and n is the number of emitters.

Emission uniformity of the quarter was calculated using the equation [8]

$$EU = \frac{q_{25\%}}{\bar{q}} \times 100$$ \hspace{1cm} (4)

where:

$q_{25\%}$ is the mean of the lowest 0.25 of emitter discharge.

The coefficient of variation in this calculation refers to the depth of water applied. This statistical uniformity coefficient describes the uniformity of water distribution assuming a normal distribution of flow rates from the emitters.
Application uniformity of a system is affected by hydraulic design, topography, operating pressure, pipe size, emitter spacing, and emitter discharge variability. Discharge variability is due to manufacturer’s coefficient of variation, emitter wear, and emitter plugging [7]. Table 1 illustrates the acceptability depending on the range of statistical uniformity. ASAE [16] also represents flow variation through the Christiansen Uniformity Coefficient:

$$C_u = 1 - \frac{\overline{\Delta q}}{\overline{q}}$$ \hspace{1cm} (5)

where:

- C_u = the uniformity coefficient %,
- \overline{q} = the mean emitter flow (lph), and
- $\overline{\Delta q}$ = the mean absolute deviation from the mean emitter flow (lph).

An additional method of evaluating the application uniformity of a system is described in [17]. This method uses a distribution uniformity using the average depth of application of the lower quartile over the average depth of application (Equation (8)). This method has been used by USDA and NRCS since the 1940s.

$$DU/lq = \frac{\text{avg. lower quartile-depth}}{\text{avg. depth of water accumulated in area-elements}}$$ \hspace{1cm} (6)

2.2.1. Head Loss in a Pipe

The head loss in pipes due to water flow is proportional to the pipe’s length.

$$J = \frac{\Delta H}{L}$$ \hspace{1cm} (7)

where J = The head loss in a pipe is usually expressed by either %.

The head loss due to friction is calculated by Hazen-Williams equation [18]:

$$J = 1.21 \times 10^{12} \left(\frac{Q}{C} \right)^{1.852} D^{-4.87}$$ \hspace{1cm} (8)

where:

- J = head loss is expressed by (m/100 m) or %.
- Q = flow rate is expressed by m³/h.
- D = Inside diameter of a pipe is expressed by mm.
- C = (Hazen-Williams coefficient) smoothness (the roughness) of the internal pipe, (the range for a commercial pipe is 100 – 150)
 - For polyethylene tubes when diameter < 40 mm and (C = 150) [19,20].
 - For laminar flow [21] where $R \leq 2000$ the coefficient of friction is given by:

$$f = \frac{64}{R}$$ \hspace{1cm} (9)

in which R, Reynolds number is given by:

$$R = \frac{VD}{\nu}$$ \hspace{1cm} (10)

where:

- R = Reynolds number,
- V = flow velocity (m/s),
- D = inside diameter (m), and
- ν = kinematic viscosity of irrigation water.

Critical velocity could be calculated by (10) and the following equations.

For turbulent flow ($3000 < R \leq 10^5$) the Blasius equation can be used:

$$f = 0.316R^{-0.25}$$ \hspace{1cm} (11)

For fully turbulent flow, $10^5 < R < 10^7$, Watters and Keller [22] recommended the following equation:

$$f = 0.13R^{-0.172}$$ \hspace{1cm} (12)

2.3. Statistical Analysis

All the collected data were subjected to the statistical analysis as the usual technique of analysis of variance (ANOVA) and the least significant difference (L.S.D) between systems at 5% had been done according to [23].

3. RESULTS AND DISCUSSION

3.1. The Effect of Closed Circuits at Different Lateral Lengths on Emitter Discharge and the Cumulative Flow Lines Subsidiary

1) Closed circuits with tow manifolds of trickle irrigation system (CTMDIS):

- Data of Figures 4(a), 4(b) and 4(c) indicate the effect of closed circuits with tow manifolds of trickle irrigation system (CTMTIS) at different laterals lengths (40, 60, and 80 m) on dripper flows and the Cumulative flows lines subsidiary. Under the lateral lines length (40 m), emitter flow was the highest value (4.18 lph), then came the lateral line length (60 m) value was 3.72 lph. The lowest value was 3.71 lph achieved under lateral line length (80 m). While as for the cumulative flow under lateral length (80 m) was the highest (990.0 lph), then came the lateral line length (60 m) value was 3.72 lph. The lowest value was 3.71 lph achieved under lateral line length (80 m). While as for the cumulative flow under lateral length (80 m) was the highest (990.0 lph), then lateral length (60 m) (744.0 lph), while the lowest value of the cumulative flow was 599.9 under lateral length (40 m) as shown in Figures 4(a), 4(b) and 4(c) at (1.0 bar) operating pressure and under the laboratory conditions as stated by [14,22,24,25]. There were significant differences at the 5% level in the emitters flow and the cumulative flows between any two lateral lengths of CTMTIS. The increase in emitters flow and the cumulative flows was significant.

Table 1. Methods of comparison of statistical uniformity [7].

<table>
<thead>
<tr>
<th>Method Acceptability</th>
<th>Statistical Uniformity, Us (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>95-100</td>
</tr>
<tr>
<td>Good</td>
<td>85-90</td>
</tr>
<tr>
<td>Fair</td>
<td>75-80</td>
</tr>
<tr>
<td>Poor</td>
<td>65-70</td>
</tr>
<tr>
<td>Unacceptable</td>
<td><60</td>
</tr>
</tbody>
</table>

flows under CTMTIS were 23.21%, 23.36%; 30.10%, 30.10% and 41.78%, 41.74% under lateral lengths 40, 60 and 80 m, respectively in comparison with the control values of traditional trickle irrigation system TTIS as shown in Table 3 and the same Figures 4(a), 4(b) and 4(c).

2) Closed circuits with one manifold of trickle irrigation system (COMTIS):

Data of Figures 5(a), 5(b) and 5(c) indicate the effect of closed circuits with one manifold of trickle irrigation system (COMTIS) at different laterals lengths (40, 60, and 80 m) on emitter flows and the Cumulative flows lateral lines. According to emitter flows of the laterals lengths could put in the following ascending orders Lateral Length 60 m (3.51 lph) < Lateral Length 80 m (3.59 lph) < Lateral Length 40 m (4.07 lph). Concerning to cumulative flow per line, it is obvious that the lateral lengths under study when using (COMTIS) method could be arranged in the following ascending order Lateral Length 80 m (576.7 lph) < Lateral Length 60m (520.0 lph) < Lateral Length 40m (426.0 lph) as shown in Figures 6(a), 6(b) and 6(c) at (1.0 bar) operating pressure under the laboratory conditions as stated by [14, 22,24,25].

There were significant differences at the 0.05 level in the emitters flow and the cumulative flows between any two lateral lengths of COMTIS. The increase in emitters flow and the cumulative flows under COMTIS were 21.13%, 21.26%; 25.92%, 25.90% and 39.83%, 39.81% under lateral lengths 40; 60 and 80 m, respectively in comparison with the control values of traditional trickle irrigation system TTIS as shown in Table 3 and the same Figures 6(a), 6(b) and 6(c). We can note from the Figures 4-6 that the flow of emitters became a regular at the end of the line, such as first-line using the methods amended (CTMTIS and COMTIS), and this was due to irregular pressure lines, the Sub-corrected methods compared with the system of traditional as well as from the values of the percentages of decrease in pressure values in Table 2.
3) Uniformity coefficient under different lateral lengths of closed circuits methods:

Uniformity coefficient under CTMTIS were the highest values (97.74%; 95.14% and 92.03%), then COMTIS (95.73%; 89.45% and 83.25%), while the lowest values of uniformity coefficient was 88.27%; 84.73% and 80.53% under TTIS when using three laterals line lengths (40, 60 and 80 m), respectively as stated by [4], as shown in Table 3. That LSD 0.05 value was (2.5) and (2.1) show there are significant differences in uniformity coefficient between all lateral lengths in each connection methods of irrigation, with the exception of that between CTMTIS and COMTIS in the same lateral lengths 40m. The increases percentage in uniformity coefficient under CTMTIS were 9.68%; 10.94% and 12.49 %, while the increases percentage under COMTIS were 7.79%; 5.27% and 3.26% at three lateral lengths 40, 60, and 80 m, respectively relative to TTIS. According to the uniformity coefficient, the interaction between the connection methods and lateral lengths treatments was significant, as stated [5,6,8,26] about the classification of acceptability of trickle irrigation system.

The variation is in uniformity coefficient between the lateral lengths under CTMTIS and COMTIS according to LSD at 0.05 values and Figure 7. Due to hydraulics, and adjusted friction loss in lateral lines values for new irrigation methods are shown in Figure 8.

4) Effect of closed circuits methods and lateral length on friction loss:

Table 2. Effect of the closed circuits irrigation methods on emitter flow and cumulative flow.

<table>
<thead>
<tr>
<th>Irrigation Method</th>
<th>Lateral Length (m)</th>
<th>Emitter Flow (lph)</th>
<th>Reduction Pressure (%)</th>
<th>Cumulative Flow (lph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTMTIS</td>
<td>40</td>
<td>4.18</td>
<td>3.70</td>
<td>555.9</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.72</td>
<td>5.60</td>
<td>744.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3.71</td>
<td>7.00</td>
<td>990.0</td>
</tr>
<tr>
<td>COMTIS</td>
<td>40</td>
<td>4.07</td>
<td>3.99</td>
<td>541.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.51</td>
<td>6.10</td>
<td>702.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3.59</td>
<td>8.90</td>
<td>958.0</td>
</tr>
<tr>
<td>TTIS</td>
<td>40</td>
<td>3.21</td>
<td>8.35</td>
<td>426.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.60</td>
<td>13.87</td>
<td>520.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>2.16</td>
<td>30.58</td>
<td>576.7</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>0.03</td>
<td>0.24</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 3. Effect of closed methods and lateral lengths on uniformity coefficient (%) and friction loss (bar).

<table>
<thead>
<tr>
<th>Irrigation connection Method</th>
<th>Lateral Length (m)</th>
<th>Uniformity Coefficient, %</th>
<th>Coefficient Variation (CV)</th>
<th>Acceptability By ASAE 1996</th>
<th>Friction Loss (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTMTIS</td>
<td>40</td>
<td>97.74</td>
<td>0.08</td>
<td>Excellent</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>95.14</td>
<td>0.06</td>
<td>Excellent</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>92.03</td>
<td>0.12</td>
<td>good</td>
<td>0.170</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>95.73</td>
<td>0.07</td>
<td>Excellent</td>
<td>0.080</td>
</tr>
<tr>
<td>COMTIS</td>
<td>60</td>
<td>89.45</td>
<td>0.16</td>
<td>good</td>
<td>0.170</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>83.25</td>
<td>0.23</td>
<td>good</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>88.27</td>
<td>0.18</td>
<td>good</td>
<td>0.114</td>
</tr>
<tr>
<td>TTIS</td>
<td>60</td>
<td>84.73</td>
<td>0.22</td>
<td>good</td>
<td>0.221</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>80.53</td>
<td>0.28</td>
<td>fair</td>
<td>0.400</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td>0.21</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>
According to friction loss as shown in Figure 8, the lowest values (0.05; 0.13 and 0.17 bar) were under CTMTIS, then COMTIS values of friction loss were 0.08; 0.17 and 0.25 bar, while the highest values were under TTIS (0.114; 0.221 and 0.4 bar) when using three lateral lines lengths (40; 60 and 80 m), respectively as stated by [11-13]. The variation in uniformity coefficient between the lateral lengths under CTMTIS and COMTIS according to LSD at 0.05 values and Figures 3 and 4. Due to hydraulics, and adjusted friction loss in lateral lines values for new irrigation methods are shown in Figure 8.

As shown LSD 0.05 values in Table 4 there are significant differences in friction loss values between all lateral lengths and all methods. The decrease percentage in friction loss under CTMTIS were 56.14%; 41.17% and 57.50%, while the decrease percentage under COMTIS were 29.82; 23.07 and 37.50 at three lateral lengths (40; 60 and 80), respectively. According to the friction losses, The interaction between the connection methods and lateral lengths treatments was significant and the main reason of increase uniformity coefficient of closed circuits methods CTMTIS and COMTIS is that the friction loss decreased significantly under these methods Data as we can note the data in Tables 3 and 4.

The study is confirms that the closed circuits of trickle irrigation systems (CTMTIS) and (COMTIS) by some modifications in manifolds and laterals are; generally, polyethylene pipes of (0% slope) fixed level and fitted with similar and equally spaced emitters whose discharges usually decrease in the head losses along the lines with flow direction which led to that increase in the above-described Uniformity coefficients as shown in Tables 3 and 4 and Figures 7 and 8. Many investigators provided approximate solutions for the problem of trickle irrigation lateral design. Among the earlier investigators were [14,22,24,25].

5) Effect of different operating pressures on emitters discharge of lateral lines closed circuits:

In Table 5 we can be observed there was a direct relationship between the operating pressures and the average discharge of lateral lines along the lines in all cases and this is logical. When operating pressure 0.8 bar was under used CTMTIS method, the average of emitter discharge when lateral length 40 m was 4.48 lph and when using the COMTIS and the value of the average discharge of emitter was 4.20 lph under the same length of the line.

While with the change in the operating pressure it’s increased to 1.0 bar. When the length of lateral lines was
Table 4. Effect of operating pressures 1.0 bar on the flow parameters of PE lateral tubes.

<table>
<thead>
<tr>
<th>Hydraulic Parameters</th>
<th>LL (m) of TTIS</th>
<th>LL (m) of CTMTIS</th>
<th>LL (m) of COMTIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of emitters</td>
<td>40 60 80</td>
<td>40 60 80</td>
<td>40 60 80</td>
</tr>
<tr>
<td>Emitter (Q) (lph)</td>
<td>133 200 267</td>
<td>133 200 267</td>
<td>133 200 267</td>
</tr>
<tr>
<td>Total (Q) (lph)</td>
<td>3.21 2.60 2.16</td>
<td>4.18 3.72 3.71</td>
<td>4.07 3.51 3.59</td>
</tr>
<tr>
<td>Velocity avg. m/s</td>
<td>0.94 1.62 1.97</td>
<td>0.86 1.54 1.88</td>
<td>0.91 1.73 1.92</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>3234 3489 3612</td>
<td>3238 3001 3062</td>
<td>3859 3753 3810</td>
</tr>
<tr>
<td>Flow Type</td>
<td>Turbulent</td>
<td>Turbulent</td>
<td>Turbulent</td>
</tr>
<tr>
<td>Critical Velocity f</td>
<td>= ε /d</td>
<td>0.89 1.58 1.93</td>
<td>0.82 1.48 2.83</td>
</tr>
<tr>
<td>Hf (bar)</td>
<td>0.114 0.221 0.400 0.050 0.130 0.170</td>
<td>0.080 0.170 0.250</td>
<td></td>
</tr>
</tbody>
</table>

ε /d = Roughness Coefficient; LL = Lateral Length (m); Rn > 3000 = Turbulent flow; Rn < 3000 = Laminar flow.

Table 5. Effect of operating pressures (bar) on discharges of the closed circuits.

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>Discharge values (lph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lateral lengths(m) of</td>
</tr>
<tr>
<td></td>
<td>TTIS</td>
</tr>
<tr>
<td>0.2</td>
<td>1.35 1.26 0.89</td>
</tr>
<tr>
<td>0.4</td>
<td>1.50 1.39 1.01</td>
</tr>
<tr>
<td>0.6</td>
<td>1.84 1.58 1.15</td>
</tr>
<tr>
<td>0.8</td>
<td>2.25 1.82 1.37</td>
</tr>
<tr>
<td>1.0</td>
<td>2.93 2.18 1.73</td>
</tr>
<tr>
<td>1.2</td>
<td>3.10 2.49 1.98</td>
</tr>
<tr>
<td>1.4</td>
<td>3.24 2.98 2.23</td>
</tr>
<tr>
<td>1.6</td>
<td>3.47 3.35 2.52</td>
</tr>
<tr>
<td>1.8</td>
<td>3.65 3.49 2.88</td>
</tr>
<tr>
<td>2.0</td>
<td>3.84 3.55 3.32</td>
</tr>
</tbody>
</table>

*The shading areas are all discharge values at the nominal pressure (1.0 bar) and the discharge values above standard discharge value (4.0 lph).
*Standard value of GR dripper Built-in is (4.00 lph at Operating pressure 1.00 bar).
*Values above (4.0 lph) when press more 1.0 bar no accepted because they need high energy.

40 m, the average value of the discharge in this case was 4.48 lph under using CTMTIS While the average value of the discharge was 4.33 lph with using the COMTIS method. The lateral lines at all cases of Control TTIS and lengths 60 and 80 m under used (CTMTIS, COMTIS), the average value of the discharge didn’t reach the nominal value for this type of emitters (GR Built-in) where the nominal value for this type of emitters is 4 lph at the operating pressure is 1.0 bar as shown in Table 5.

4. CONCLUSIONS

It could be concluded that:

Irrigation systems at 40, 60, 80 m could be arranged according to emitters flow, the cumulative flow, and uniformity coefficient in the following ascending order: TTIS < COMTIS < CTMTIS. Irrigation systems at 40, 60, 80 m could be arranged according to friction losses of lateral lines in the following ascending order: CTMTIS < COMTIS < TTIS.

The increases percentage in uniformity coefficient under CTMTIS were 9.68%; 10.94% and 12.49 %, while the increases percentage under COMTIS were 7.79%; 5.27% and 3.26% at three lateral lengths 40, 60, and 80 m, respectively relative to TTIS. Was reached values higher than the standard value for the discharge of this emitters type, a 4 L/h at operating pressure 1.0 bar by using a closed irrigation systems at a low operating pressure 0.8 bar, giving an important indicator of energy saving operation using these modifications to the trickle irrigation system. Under using the CTMTIS and COMTIS when Lateral Length 40 m we got on a 4.38, 4.20 L/h, respectively. Finally, observed data recommend that application CTMTIS when lateral length are 40, 60 and 80 m, COMTIS when lateral length 40 and 60 m and TTIS when lateral length 40 due to an increase the emitters uniformity (above 85% UC) and low friction losses (less than 20%) in lateral lines, which led to constant pressure along the line sub-flow and balance at the end of the line such as the beginning.
REFERENCES

