7-20-2004

Sahra Integrated Modeling Approach to Address Water Resources Management in Semi-Arid River Basins

Springer, Gupta, Brookshie, Liu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ucowrconfs_2004
This is the abstract of a presentation given on Tuesday, 20 July 2004, in session 3 of the UCOWR conference.

Recommended Citation
http://opensiuc.lib.siu.edu/ucowrconfs_2004/8

This Article is brought to you for free and open access by the Conference Proceedings at OpenSIUC. It has been accepted for inclusion in 2004 by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
SAHRA INTEGRATED MODELING APPROACH TO ADDRESS WATER
RESOURCES MANAGEMENT IN SEMI-ARID RIVER BASINS

Everett P. Springer, Hoshin V. Gupta, David S. Brookshire, Yuqiong Liu

Everett P. Springer, Technical Staff Member Environmental Dynamics and Spatial Analysis
Group, MS J495, Los Alamos National Laboratory, Los Alamos, NM 87545, 505-667-0569, everetts@lanl.gov
Hoshin V. Gupta, Associate Director, SAHRA, NSF Science & Technology Center for
Sustainability of semi-Arid Hydrology and Riparian Areas, The University of Arizona, Tucson,
AZ 85721, 520-626-6974, hosh_stc@hwr.arizona.edu
David S. Brookshire, Professor, MSC05-3060, Department of Economics, University of New
Mexico, Albuquerque, NM 87131-0001, 505-277-1964, brookshi@nmu.edu
Yuqiong Liu, Research Associate, SAHRA, NSF Science & Technology Center for
Sustainability of semi-Arid Hydrology and Riparian Areas, The University of Arizona, Tucson,
AZ 85721, 520-626-6974, yqliu@hwr.arizona.edu

Water resources decisions in the 21st Century that will affect allocation of water for economic
and environmental will rely on simulations from integrated models of river basins. These models
will not only couple natural systems such as surface and ground waters, but will include
economic components that can assist in model assessments of river basins and bring the social
dimension to the decision process. The National Science Foundation Science and Technology
Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been
developing integrated models to assess impacts of climate variability and land use change on
water resources in semi-arid river basins. The objectives of this paper are to describe the SAHRA
integrated modeling approach and to describe the linkage between social and natural sciences in
these models. Water resources issues that arise from climate variability or land use change may
require different resolution models to answer different questions. For example, a question related
to streamflow may not need a high-resolution model whereas a question concerning the source
and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model
development because one cannot anticipate the questions in advance, and the computational and
data resources may not always be available or needed for the issue to be addressed. The coarsest
resolution model is based on dynamic simulation of subwatersheds or river reaches. This model
resolution has the advantage of simplicity and social factors are readily incorporated. Users can
readily take this model (and they have) and examine the effects of various management strategies
such as increased cost of water. The medium resolution model is grid based and uses variable
grid cells of 1 – 12 km. The surface hydrology is more physically based using basic equations for
energy and water balance terms, and modules are being incorporated that will simulate
engineering components such as reservoirs or irrigation diversions and economic features such as
variable demand. The fine resolution model is viewed as a tool to examine basin response using
best available process models. The fine resolution model operates on a grid cell size of 100 m or
less, which is consistent with the scale that our process knowledge has developed. The fine
resolution model couples atmosphere, surface water and groundwater modules using high
performance computing. The medium and fine resolution models are not expected at this time to
be operated by users as opposed to the coarse resolution model. One of the objectives of the
SAHRA integrated modeling task is to present results in a manner that can be used by those
making decisions. The application of these models within SAHRA is driven by a scenario analysis and a place location. The place is the Rio Grande from its headwaters in Colorado to the New Mexico – Texas border. This provides a focus for model development and an attempt to see how the results from the various models relate. The scenario selected by SAHRA is the impact of a 1950’s style drought using 1990’s population and land use on Rio Grande water resources including surface and groundwater. The same climate variables will be used to drive all three models so that comparison will be based on how the three resolutions partition and route water through the river basin. Aspects of this scenario will be discussed and initial model simulation will be presented. The issue of linking economic modules into the modeling effort will be discussed and the importance of feedback from the social and economic modules to the natural science modules will be reviewed.

Acknowledgements
This material is based upon work supported in part by SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas) under the Science and Technology program of the National Science Foundation, grant EAR-9876800, and by the Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD) project, Computational Models of the Water Cycle of Semi-Arid Basins, which collaborates with SAHRA.