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free-viewing task with those from three sets of artificial observers
(i.e., image-saliency, image-entropy, and random-gaze models)
that were presented with the same natural images (Schlesinger and
Amso, 2013; Amso et al., 2014). The real and artificial observers’
fixation data were first transformed into corresponding sequences
of COG samples. We then measured the learnability of the five sets
of COG image sequences by presenting each set to an SRN, which
was trained to reproduce the corresponding sequences. A key find-
ing from this work, over two simulation studies, was that the COG
sequences produced by the human infants resulted in both more
accurate and rapid learning than the adult COG sequences, or any
of the three artificial-observer sequences.

In the current paper, we extended our model in a num-
ber of important ways to investigate the development of object
perception in 3-month-olds. First, our dataset derives from a
paradigm called the perceptual-completion task, which is specif-
ically designed to assess infants’ perception of a moving, partially
occluded object (Kellman and Spelke, 1983; Johnson and Aslin,
1995). Figure 1A illustrates this occluded-rod display, which is
presented first to infants, and then repeated until they habitu-
ate to the display. Two subsequent displays are then presented
to infants and used to probe their perception and memory of
the occluded-rod display (see Figures 1B,C). Because our focus
here is on infants’ initial gaze patterns at the beginning of the
task, before they have accumulated extensive experience with
the display, we therefore restrict our analyses to gaze data from
the first trial of the occluded-rod display. Although this display
is somewhat simplified relative to the natural images from our
previous study, it also has the benefit that infants will likely
devote much of their attention to either of the two primary
objects in the scene (i.e., the moving rod and/or the occluder),
thereby producing a rich source of object-directed gaze data to
analyze.

A second important advance in the current paper concerns
how the artificial-observer gaze patterns are produced. Specifi-
cally, in our previous model, several parameters of the artificial
observers were left to vary freely, which resulted in systematic dif-
ferences between the kinematics of the gaze patterns produced by
the human-infant and artificial observers. For example, the arti-
ficial observers generated significantly longer gaze shifts than the
infants. We address this issue in the current model by carefully yok-
ing the gaze patterns of each artificial observer to a corresponding

individual infant, so that the average kinematic measures were the
same for each observer group.

A third advance is that we also simplified the architecture of
the model used to learn the COG sequences. In particular, our
previous model focused specifically on the process of visual explo-
ration, including a component in the model that simulated an
intrinsically motivated learner (i.e., an agent that is motivated
to improve its own behavior, rather than to reach an externally
defined goal). However, because the issue of intrinsic motivation is
not central to the current paper, we have stripped this component
from the model, resulting in a more direct and straightforward
method for assessing the relative learnability of the COG sequences
produced by each of the observer groups.

In the next section, we provide a detailed description of (1)
the procedure used to transform infants’ gaze data into COG
sequences, (2) the comparable steps used to generate the artifi-
cial observers’ gaze data and COG sequences, and (3) the training
regime employed to measure COG sequence learnability. In the
meantime, we briefly sketch the procedure here, followed by our
primary hypotheses and analytical strategy.

The infant gaze data were obtained from a sample of 3-month-
old infants who viewed the occluded-rod display illustrated in
Figure 1A. Fixation locations for each infant were acquired by
an automated eye-tracker. These locations were then mapped to
the corresponding spatial position and frame number from the
occluded-rod display, and a small (41 × 41 pixel) image sam-
ple, centered at the fixation location, was obtained for each gaze
point. Next, two sets of artificial gaze sequences were generated.
First, an image-saliency model was used to produce a sequence of
gaze points in which gaze direction is determined by bottom-up
visual features, such as motion or regions with strong light/dark
contrast (e.g., Itti and Koch, 2000). Second, in the random-gaze
model, locations were selected at random from the occluded-
rod display. Each of the artificial-observer models was used to
generate a set of COG sequences, with each sequence in the set
yoked to the timing and gaze-shift distance of a corresponding
infant.

Given our previous findings with the image free-viewing
paradigm, our primary hypothesis was that the COG sequences
produced by infants during the occluded-rod display would be
more easily learned by a set of SRNs than either of the two
artificial-observer sequences. We evaluated this hypothesis by

FIGURE 1 | Displays used to assess perceptual completion in infants: (A) occluded-rod (habituation) display, and (B) complete-rod and (C) broken-rod

test displays.
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assigning an SRN to each of the infants, and then training
each network simultaneously on the three corresponding COG
sequences (i.e., the infant’s sequence, plus the yoked image-
saliency and random-gaze sequences). Learning was implemented
in each SRN by presenting it with the three corresponding
COG sequences, one image sample at a time as input, and
then using a supervised learning algorithm to train the SRN to
produce as output the next image sample from the sequence.
We then assessed learnability by ranking the three observers
assigned to each SRN by mean prediction error after each train-
ing epoch. Given this measure, we predicted that infants would
not only have the highest average rank at the start of train-
ing (i.e., their COG sequences would be learned first by the
SRNs), but also that this difference would persist throughout
training.

In addition, we also probed the training process further by
exploring the effect of manipulating the context units on the per-
formance of the SRN. In particular, we implemented a “forgetting
function” in which the context units were reset at one of three
intervals (every 1, 2, or 5 COG training samples; for a related dis-
cussion, see Elman, 1993). In the most extreme condition, resetting
the context units after each COG sample enabled us to determine
if the network was learning exclusively on the basis of each current
COG sample – in which case, the 1-sample reset would have no
impact on performance – or alternatively, if the memory trace of
recent COG samples encoded within the recurrent pathway was
also being used as a predictive cue. Accordingly, we predicted that
resetting the context layer units would not only impair perfor-
mance of the SRN, but also that this interference effect would be
greatest for the infants’ COG sequences.

It is important to stress in the 2- and 5-sample reset conditions,
though, that this trace accumulates in a fashion that weights the
memory toward COG samples that are more distal in time (i.e.,
past COG samples are not weighted equally). For example, in the
5-sample case, the first COG sample in a wave of five is effec-
tively presented to the network as input (directly or indirectly)
four times: once as the first COG sample, and then four more
times as the trace of the sample cycles through the context units.
By this logic, the fourth COG sample in the same wave of five is
presented twice. Thus, the forgetting function provides a some-
what qualitative method for revealing whether or not sequential
or temporal structure is present in infants’ COG image samples,
but may not directly specify how those regularities are distributed
over time. We return to this issue in the discussion and raise a
potential strategy for addressing it.

STIMULI
OCCLUDED-ROD DISPLAY
During the collection of eye-tracking data (see below), the
occluded-rod display was rendered in real-time. In order to con-
vert this display into a sequence of still frames for the current
simulation study, it was first captured as a video file (AVI for-
mat, 1280 × 1024 pixels, 30 fps), and then parsed by Matlab
into still frames. A complete cycle of the rod’s movement, from
the starting position on the far right, to the far left, and then
back to the starting location, was extracted from the video and
resulted in 117 frames (∼3.5 s in real-time). Note that during

video presentation, the dimensions of the occluded-rod display
were 480 × 360 pixels, which was presented at the center of
the monitor, surrounded by a black border. This border was
subsequently cropped from the still-frame images, so that the
occluded-rod display filled the frame. The gaze data obtained
from infants were adjusted to reflect this cropping process; mean-
while, as we describe below, the simulated gaze data from the
image-saliency and random-gaze models were obtained by pre-
senting the cropped (480 × 360) occluded-rod displays to each
model.

OBSERVER GROUPS
Infants
Twelve 3-month-old infants (age, M = 87.7 days, SD = 12 days; 5
females) participated in the study. Infants sat on their parents’ laps
approximately 60 cm away from a 76 cm monitor in a darkened
room. Eye movements were recorded using the Tobii 1750 remote
eye tracker. Before the beginning of each trial, an attention-getter
(an expanding and contracting children’s toy) was used to attract
infants’ gaze to the center of the screen. As soon as infants fixated
the screen, the attention-getter was replaced with the experimen-
tal stimulus and timing of trials began. Each trial ended when
the infant looked away for 2 s or when 60 s had elapsed. Note
that all analyses described below were based on the eye-tracking
data acquired during each infant’s first habituation trial (i.e., the
occluded-rod display).

Image-saliency model
The saliency model was designed to simulate the gaze patterns of an
artificial observer whose fixations and gaze shifts are determined
by image salience, that is, by bottom-up visual features such as
motion and light/dark contrast. In particular, the 117 still frames
extracted from the occluded-rod display were transformed into a
set of corresponding saliency maps by first creating four feature
maps (tuned to motion, oriented edges, luminance, and color con-
trast, respectively) from each still-frame image, and then summing
the feature maps into a saliency map. The sequence of 117 saliency
maps was then used to generate a series of simulated fixations. We
describe each of these processing steps in detail below.

Feature maps. Each of the still-frame images was passed through
a bank of image filters, resulting in four sets of feature maps: one
motion map (i.e., using frame-differencing between consecutive
frames), four oriented edge maps (i.e., tuned to 0◦, 45◦, 90◦, and
135◦), one luminance map, and two color-contrast maps (i.e., red–
green and blue–yellow color-opponency maps). In addition, this
process was performed over three spatial scales (i.e., to capture the
presence of the corresponding features at high, medium, and low
spatial frequencies), by successively blurring the original image
and then repeating the filtering process [for detailed descriptions
of the algorithms used for each filter type, refer to Itti et al. (1998)
and Itti and Koch (2000)]. As a result, 24 total feature maps were
computed for each still-frame image.

Saliency maps. Each saliency map was produced by first nor-
malizing the corresponding feature maps (i.e., by scaling the
values on each map between 0 and 1), and summing the 24
maps together. For the next step (simulating gaze data), each
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saliency map was then downscaled to 40 × 30. These resulting
saliency maps were then normalized, by dividing each map by
the average of the highest 100 saliency values from that map.
Figure 2 illustrates a still-frame image from the occluded-rod
display on the left, and the corresponding saliency map on the
right.

Simulated gaze data. Next, 12 sets of simulated gaze sequences
were produced with the image-saliency model. Each set was yoked
to the gaze data from a specific infant, and in particular, four
dimensions of the infant and artificial-observer gaze sequences
were equated: (1) the location (i.e., gaze point) of the first fixation,
(2) the total number of fixations, (3) the duration of each fixa-
tion (i.e., dwell-time), and (4) the distance traveled between each
successive fixation (i.e., gaze-shift distance).

At the start of the simulated trial, the image-saliency model’s
initial gaze point was set equal to the location of the infant’s first
fixation. The model’s gaze point was then held at this location for
the same duration as the infant’s. For example, if the infant’s initial
fixation was 375 ms, the model’s gaze point remained at the same
location for 11 frames (i.e., 375 ms ÷ 33 ms/frame = 11 frames).
In a comparable manner, each gaze shift produced by the image-
saliency model was therefore synchronized with the timing of the
corresponding infant’s gaze shift.

Subsequent fixation locations were selected by the image-
saliency model by iteratively updating a fixation map for the
duration of the fixation. The fixation map represents the difference
between the cumulative saliency map (i.e., the sum of the saliency
maps that span the current fixation) and a decaying inhibition
map (see below). Note that the inhibition map served as an analog
for an inhibition-of-return (IOR) mechanism, which allowed the
saliency model to release its gaze from the current location and
shift it to other locations on the fixation map.

Each trial began by selecting the initial fixation as described
above. Next, the inhibition map was initialized to 0, and a 2D
Gaussian surface was added to the map, centered at the current
fixation point, with an activation peak equal to the value at the
corresponding location on the saliency map. The Gaussian surface
spanned a 92 × 92 pixel region, slightly larger than twice the size
of a single COG sample (see COG Image Sequences, below). Over

the subsequent fixation duration, activity on the inhibition map
decayed at a rate of 10% per 33 ms. At the end of the fixation, the
next fixation point was selected: (a) the fixation map was updated
by subtracting the inhibition map from the saliency map (nega-
tive values were set to 0), (b) the top 500 values on the saliency
map were chosen as potential target locations, and (c) the gaze-
shift distance between the current fixation and each target location
was computed. Finally, the target location with the gaze-shift dis-
tance closest to that produced by the infant (on the corresponding
gaze shift) was selected as the next fixation location (any ties were
resolved with a simulated coin-toss). The process continued until
the model produced the same number of fixations as the corre-
sponding infant (note that the sequence of 117 saliency maps were
repeated as necessary).

Random-gaze model
The random-gaze model was designed as a control condition,
to simulate the gaze pattern of an observer who scanned the
occluded-rod display by following a policy in which all locations
(at a given distance from the current gaze point) are equally likely
to be selected. Thus, the gaze sequences were produced by the
random-gaze model following the same four constraints as those
for the image-saliency model (i.e., number and duration of fix-
ations, gaze-shift distance, etc.), with the one key difference that
upcoming fixation locations were selected at random (rather than
based on image salience).

To help provide a qualitative comparison between typi-
cal gaze patterns produced by the three types of observers,
Figure 3 presents the cumulative scanplot from one of the infants
(Figure 3A), as well as the corresponding scanplots from the
image-saliency and random-gaze models that were yoked to the
same infant (Figures 3B,C, respectively).

SUMMARY STATISTICS
Prior to the training phase, we computed summary statistics for the
three models, in order to verify that the yoking procedure resulted
in comparable performance patterns for each yoked dimension.
Table 1 presents the mean summary statistics for the three observer
groups (with standard deviations presented in parentheses). Note
that the values presented in italics represent two of the four

FIGURE 2 | Illustration of one of the still-frame images from the occluded-rod display (A), and the corresponding saliency map (B).
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FIGURE 3 | Scanplot (sequence of fixation points) produced by one of the infants (A), together with the corresponding scanplots from the yoked

image-saliency (B) and random-gaze models (C).

Table 1 | Summary statistics as a function of observer group.

Fixation

duration

Saliency

captured

Revisit

rate

Fixation

dispersion

Gaze-shift

distance

Infant 339.38

(96.03)

0.66

(0.07)

0.23

(0.07)

78.55

(15.08)

59.20

(18.82)

Saliency 356.19

(95.47)

0.65

(0.03)

0.19

(0.11)

82.46

(18.68)

60.36

(18.44)

Random 356.19

(95.47)

0.47*

(0.05)

0.16

(0.08)

110.60*

(28.75)

59.21

(18.82)

*p < 0.01 (paired comparison vs. infant observer group). Standard deviation pre-
sented in parentheses; values in italics correspond to the two measures that
were yoked across the three observer models.

dimensions (i.e., fixation duration and gaze-shift distance) that
were systematically equated between observer groups. In general,
except where noted below, post hoc comparisons across the three
observer groups revealed no significant differences. The first col-
umn presents the mean fixation duration (in milliseconds) for the
infant, image-saliency, and random-gaze groups. The net differ-
ence between real and artificial observers was approximately 17 ms,
and was presumably due to the fact while the infant data were
measured continuously, the artificial observers were simulated in
discrete time steps of 33.3 ms.

The second column presents the mean saliency “captured”
by each model, that is, the degree to which each group’s fixa-
tions were oriented toward regions of maximal saliency in the
display. This was computed by projecting the gaze points pro-
duced by each of the observer groups on to the corresponding
saliency maps, and then calculating the average saliency for
those locations. Recall that values on the saliency maps were
scaled between 0 and 1; the average saliency values from each
group therefore reflected the proportion of optimal or maxi-
mal saliency captured by that group. There are two key results.
First, the saliency model achieved an average of 0.65 saliency,
indicating that – due to the constraint imposed on allowable
gaze-shift distance – the model did not consistently fixate the
most salient locations in the display. The second noteworthy find-
ing is that infants’ gaze patterns captured a comparable level of
saliency, that is, 0.66. As Table 1 notes, the average saliency
captured by the random observer group was significantly lower

than the infant and image-saliency groups [both ts(22) > 8.46,
ps < 0.001].

The third column presents the mean revisit rate for each
observer group. Revisit rate was estimated by first creating a null
frequency map (a 480 × 360 matrix with all locations initialized
to 0). Next, for each fixation, the values within a 41 × 41 square
(centered at the fixation location) on the frequency map were
incremented by 1. This process was repeated for all of the fixa-
tions generated by an observer, and the frequency map was then
divided by the number of fixations. For each observer, the max-
imum value from this map was recorded, reflecting the location
in the occluded-rod display that was most frequently visited (as
estimated by the 41 × 41 fixation window). The maximum value
was then averaged across observers within each group, providing a
metric for the peak proportion of fixations that a particular loca-
tion in the occluded-rod display was visited, on average. As Table 1
illustrates, a key finding from this analysis is that infants had the
highest revisit rate (23%), while the two artificial observer groups
produced lower rates.

The last two columns present kinematic measures of the gaze
patterns. First, dispersion was computed by calculating the cen-
troid of the fixations (i.e., the mean fixation location), then
calculating the mean distance of the fixations (in pixels) from the
centroid for each observer, and then averaging the resulting dis-
persion values for each group. As Figure, Table 1 indicates, infants
tended to have the least-disperse gaze patterns. Fixation dispersion
in the image-saliency observer group did not differ significantly
from the infant group, although it was significantly higher in the
random-observer group [t(22) = 3.63, p < 0.01]. Finally, the fifth
column presents the mean gaze shift distance (measured in pixels)
for each group. Because this measure was yoked across groups, as
expected, the artificial-observer groups produced mean gaze-shift
distances that were comparable to the infants’ mean distance.

COG IMAGE SEQUENCES
The final step, prior to training the model, was the process of
mapping each set of gaze patterns into a sequence of COG image
samples. This was accomplished by determining the frame number
that corresponded to the start of each fixation, projecting the gaze
point on to the resulting still-frame image, and then sampling a
41 × 41 pixel image, centered at that location. The dimensions of
the COG sample were derived from the display size and infants’
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viewing distance, and correspond to a visual angle of 1.8◦, which
falls within the estimated range of the angle subtended by the
human fovea (Goldstein, 2010). In order to facilitate the training
process, note that each of the COG samples was converted from
color (RGB) to grayscale.

MATERIALS AND METHODS
MODEL ARCHITECTURE AND LEARNING ALGORITHM
Recall that our primary hypothesis was that infants’ COG
sequences would be more easily learned by an SRN than the
sequences from the two artificial-observer models. To evaluate
this hypothesis, we trained a set of 3-layer Elman networks, with
recurrent connections from the hidden layer back to the input
layer (context units; Elman, 1990). In particular, this architecture
implements a forward model, in which the current sensory input
(plus a planned action) is used to generate a prediction of the
next expected input (e.g., Jordan and Rumelhart, 1992). The com-
plete model (including the training stimuli, network architecture,
and learning algorithm) was written and tested by the first author
(Schlesinger) in the Matlab programming environment.

The input layer of the SRN was composed of 2083 units, includ-
ing 1681 units that encoded the grayscale pixel values of the current
COG sample, 400 context units (which copied back the activ-
ity of the hidden layer from the previous time step), and two
input units that encoded the x- and y-coordinates of the upcom-
ing COG sample (normalized between 0 and 1). The input layer
was fully connected to the hidden layer (400 hidden units, i.e.,
approximately 75% compression of the COG sample), which in
turn was fully connected to the output layer (1681 units). The
standard logistic function was used at the hidden and output
layers to maintain activation values between 0 and 1; in addi-
tion, the bias terms were fixed to 0 for the hidden and output
units.

An individual training trial proceeded as follows: given the
selection of a COG sequence, the first COG sample in the sequence
was presented to the SRN. For this first sample, the activation of
the context units was set to 0.5. Activity in the network was prop-
agated forward, resulting in the predicted next COG sample. This
output was compared to the second COG sample in the sequence,
and the root mean-squared error (RMSE) was calculated. Next,
the standard backpropogation-of-error (i.e., backprop) learning
algorithm was used to adjust the SRN’s connection weights (i.e.,
training was pattern-wise). The activation values from the hidden
layer were then copied back to the input layer, and the second
COG sample was presented to the SRN. This process contin-
ued until the second-to-last COG sample in the sequence was
presented.

TRAINING REGIME
A total of 10 training runs were conducted. At the start of each
run, a single SRN was initialized with random connection weights
between 0 and 1, which were then divided by the number of incom-
ing units to the given layer (i.e., fan-in). This network was cloned
12 times, once for each of the infants. This duplication process
ensured that any subsequent performance differences between
SRNs during a run were due to the training samples unique to
each infant, rather than to the initialization procedure.

Accordingly, each of the 12 SRNs was paired with one of the
infants, and subsequently trained on the three COG sequences
associated with that infant: the selected infant’s sequence, as well
as the image-saliency and random-gaze sequences that were yoked
to the same infant. A single training epoch was defined as a sweep
through the three COG sequences. Order of observer type (i.e.,
infant, saliency, random) was randomized for each epoch. Pilot
data collection indicated that the SRNs reached asymptotic per-
formance, with a learning rate of 0.1, between 200 and 300 training
epochs. As a result, each training run continued for 300 epochs.

In order to evaluate our second hypothesis – that resetting the
activation of the context layer would have the largest interference
effect on the infants’ COG sequences – we “paused” training every
10 epochs to test each of the SRNs. During the testing phase,
learning was turned off and all connections were frozen in the SRN.
Next, the SRN was tested by presenting the three COG sequences,
four times each: (1) with recurrence functioning normally, and
(2–4) with the activity of the context units reset to 0.5 every 1, 2,
or 5 input steps, respectively.

RESULTS
Two sets of planned analyses were conducted. First, we converted
RMSE values into rank scores, and then compared the perfor-
mance of the 12 SRNs as a function of mean rank of each observer
group. In particular, this analysis focused on our predictions that
the COG sequences from the infant group would have the highest
mean ranking at the start of training, and that this difference would
persist throughout the training period. The second analysis exam-
ined the influence of resetting the context-layer units on the SRNs’
performance, which allowed us to indirectly measure the presence
of temporal dependencies in the COG sequences, between both
adjacent samples as well as those as many as five samples apart.

Figure 4 presents the RMSE produced by the 12 SRNs dur-
ing the 300 training epochs, as a function of the observer group
(i.e., infant, image-saliency, and random-observer models, respec-
tively). Note that these data are pooled over the 12 SRNs and the 10
training runs. In addition, the RMSE values presented in Figure 4
were those generated by the SRNs during the test phase, that is,
in which learning was turned off every 10 epochs. As a result,
these data reflect the performance of the SRNs while removing the
transient effect of testing order (i.e., recall that the order of the
observer groups during training was randomized across epochs).

There are two important trends suggested by Figure 4.
First, the RMSE values produced by the image-saliency group
remain consistently highest during training. Second, there is an
early “trade-off” between the infant and random-gaze groups,
which eventually results in a stable difference, favoring the
infant group. In order to determine whether these trends
were statistically reliable, we first converted the RMSE val-
ues into ranks. In particular, for each epoch, the RMSE for
the three observer groups were sorted in ascending order, and
assigned the corresponding rank (i.e., 1, 2, or 3). As before,
ranks were then averaged over the 12 SRNs and 10 training
runs.

Figure 5 presents the rank-transformed performance data.
(Note that in describing these data, we adopt the convention that
the rank of 1 is treated as “highest” while the rank of 3 is the
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FIGURE 4 | Mean prediction error (MRSE per pixel) over the 300 training epochs, as a function of the three observer groups.

FIGURE 5 | Mean rank scores over the 300 training epochs, as a function of the three observer groups.

“lowest.” In other words, a higher average rank corresponds to a
lower RMSE). In order to compare the three observer groups, a
2-way ANOVA was conducted with epoch and observer group as
the two factors. As expected, there was a main effect of observer
group [F(2,357) = 124.24, p < 0.001]. We examined this effect
with planned paired comparisons between the three groups (using
Bonferroni corrections), which also confirmed our prediction:
specifically, the infant observer group had significantly higher
overall mean rank than the image-saliency and random-gaze
groups. However, these findings were qualified by a signifi-
cant epoch × observer group interaction [F(58,10353) = 6.48,
p < 0.001]. As Figure 5 indicates, near the start of training, the
infant and random-gaze groups had similar ranks; in contrast,
a large, stable difference between the two groups emerged after
approximately 50 epochs.

In order to examine this interaction, we conducted a post hoc
analysis by first dividing training time into two phases (0 to 50 and

60 to 300 epochs). We then repeated the previous 2-way ANOVA
for each phase (i.e., epoch × observer group), including compar-
isons between the three observer groups. This analysis revealed
that while there was no significant difference between the infant
and random-gaze groups during the first 50 epochs (p = 0.64),
the infant group averaged a significantly higher rank than the
random-gaze group during the remaining 250 epochs (p < 0.005).
In particular, these results confirm our prediction that the infant
observer group would be ranked highest at the start of training,
albeit after an initial period of equivalent performance in two of
the three groups. In addition, the stability of this pattern for the
remainder of the training phase also provides support for our pre-
diction that the infant observer group would maintain the highest
rank throughout training.

The second set of analyses focused on the role of the context
layer in the SRN architecture, and more specifically, on the ques-
tion of whether periodically resetting the activity of this layer
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