
Southern Illinois University Carbondale Southern Illinois University Carbondale

OpenSIUC OpenSIUC

Theses Theses and Dissertations

8-1-2024

ON THE COMPUTABLE LIST CHROMATIC NUMBER AND ON THE COMPUTABLE LIST CHROMATIC NUMBER AND

COMPUTABLE COLORING NUMBER COMPUTABLE COLORING NUMBER

Seth Campbell Thomason
Southern Illinois University Carbondale, seth.thomason.math@gmail.com

Follow this and additional works at: https://opensiuc.lib.siu.edu/theses

Recommended Citation Recommended Citation
Thomason, Seth Campbell, "ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE
COLORING NUMBER" (2024). Theses. 3295.
https://opensiuc.lib.siu.edu/theses/3295

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC.
It has been accepted for inclusion in Theses by an authorized administrator of OpenSIUC. For more information,
please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/theses
https://opensiuc.lib.siu.edu/etd
https://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses/3295?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE

COLORING NUMBER

by

Seth Thomason

B.S., Southern Illinois University Carbondale, 2023

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

School of Mathematical and Statistical Sciences
in the Graduate School

Southern Illinois University Carbondale
August 2024

THESIS APPROVAL

ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE

COLORING NUMBER

by

Seth Thomason

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Mathematics

Approved by:

Dr. Wesley Calvert, Chair

Dr. Lindsey-Kay Lauderdale

Dr. Michael Sullivan

Graduate School
Southern Illinois University Carbondale

July 3, 2024

AN ABSTRACT OF THE THESIS OF

Seth Thomason, for the Master of Science degree in Mathematics, presented on July

3, 2024, at Southern Illinois University Carbondale.

TITLE: ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE

COLORING NUMBER

MAJOR PROFESSOR: Dr. W. Calvert

In this paper, we introduce two new variations on the computable chromatic number:

the computable list chromatic number and the computable coloring number. We show that,

just as with the non-computable versions, the computable chromatic number is always less

than or equal to the computable list chromatic number, which is less than or equal to the

computable coloring number.

We investigate the potential differences between the computable and non-computable

chromatic, list chromatic, and coloring numbers on computable graphs. One notable exam-

ple is a computable graph for which the coloring number is 2, but the computable chromatic

number is infinite.

i

ACKNOWLEDGMENTS

I am very grateful to Dr. Calvert for the guidance he has provided on this project,

as well as the many important resources he has directed me towards. His help towards

completing this thesis has been invaluable.

I would also like to thank my parents for the support that they’ve offered in all my

educational pursuits, including my thesis. Without it, I would not have been able to pursue

a Master’s degree.

ii

TABLE OF CONTENTS

ABSTRACT . i

ACKNOWLEDGEMENTS . ii

1 Introduction to the computable variants . 1

2 Separating the computable invariants from each other 11

3 Separating the ordinary invariants from the computable invariants 14

4 Separations with finite gaps . 18

5 Additional Remarks . 20

REFERENCES . 22

VITA . 23

iii

CHAPTER 1

INTRODUCTION TO THE COMPUTABLE VARIANTS

A computable function is a function from N to N which can be encoded in a computer

program. That is, there is a computer program which when given any n ∈ N, will output

f(n). This definition turns out to be essentially independent of the model of computation

used: C, Java, Python, and almost any other programming language will allow for the exact

same set of computable functions, as will formal mathematical approaches to computation

such as Turing machines and lambda calculus.

The use of N as the domain and codomain of the function are for simplicity. Writing

a natural number in binary and interpreting it as a finite binary string, we can encode

any kind of data we want, including words, images, and finite mathematical structures. In

fact, since programs in programming languages are written as strings of text, we can even

encode computer programs as natural numbers.

A computable set is a set S ⊂ N for which there is a computer program that, when

given any n ∈ N, will output True if n ∈ S and False if n /∈ S. Equivalently, S is

computable if there is a computable function f such that n ∈ S =⇒ f(n) = 1 and

n /∈ S =⇒ f(n) = 0.

Many countable sets such as N × N and the set Pω(N) of finite subsets of N have

computable bijections with N. Later in this paper we refer to a subset S of N × N being

computable. This can be interpreted directly as meaning that there exists a computer

program which takes 2 inputs and determines membership in S, but in order to use existing

knowledge about computable functions it is convenient to associate the elements of N×N

with natural numbers in a computable way, in which case a computable subset of N × N

is one associated with a computable subset of N. We will also later refer to a function

f : N × N → N being computable, this means that it is associated with a computable

function f : N → N.

1

If f1, f2, . . . is a sequence of functions from N to N, then an enumeration of this

sequence is another function F : N × N → N such that F (n, x) = fn(x) for all n, x. A

computable enumeration is a computable such function, and it is clear that only sequences

of computable functions can have computable enumerations.

By a diagonal argument, there is no computable enumeration of every computable

function. Despite this, it is possible to enumerate every possible computer program. In

a programming language like Python, programs are just finite combinations of symbols.

Most combinations of valid symbols will not produce valid programs, but any time there is

an error, we can say the program returns 0. However, it is impossible to prevent programs

which run infinitely without terminating.

This motivates the idea of a partial computable function, which is a partial function

which can be encoded in a computer program. Input values for which the program runs

forever without halting are excluded from the domain of this function. By creating a

program which is capable of emulating other programs (for example, a universal Turing

machine), we can create a computable enumeration of partial computable functions.

It is impossible to avoid repetition in this enumeration. In fact, every possible com-

putable function must show up an infinite number of times.

Whenever we deal with computability, we will assume the vertex set of our graph is

N.

An n-coloring of G is a function f : V (G) → {1, 2, . . . , n}. It is proper if no two

adjacent vertices are assigned the same color.

Some common (isomorphism classes of) graphs which we will use are as follows:

Kn is a complete graph on n vertices

Km,n is a complete bipartite graph with partite sets of size m and n

Cn is a cyclic graph on n vertices

Θa,b,c is a theta graph, which consists of 2 vertices connected by 3 disjoint paths of

lengths a, b, and c.

2

Definition 1.1. A graph G is computable if there is a computable subset of N × N that

corresponds to the edges of G.

Another way of thinking about this is that there is a program which can take in

any two vertices and decide if they are adjacent. At first, this may seem to suggest that

the graph has nice computational properties in general but this is not the case. In [1],

Bean shows that there exists a computable, connected, planar graph which has a proper

3-coloring, but which has no computable, proper m-coloring for any m ∈ N.

Definition 1.2. The computable chromatic number χc(G) of a computable graph G is the

smallest natural number m such that G has a proper, computable m-coloring. If there is no

such m, we say χc(G) = ∞.

Recall that a coloring is a function from V (G) = N to N, so a computable coloring is

a computable such function. Then, for the graph given in [1], χ(G) = 3 but χc(G) = ∞.

Proposition 1.3. For every graph G, χ(G) ≤ χc(G).

This is clear as if χc(G) = k, G has a proper, computable k-coloring, which is also a

proper k-coloring, so χ(G) ≤ k.

Definition 1.4. A list assignment L for a simple graph G is a function that assigns to

each vertex v in G a list of colors L(v) ∈ Pω(N).

Definition 1.5. A proper L-coloring of G is a proper coloring f of G such that f(v) ∈ L(v)

for each v ∈ V (G).

List coloring was introduced independently by Erdős, Rubin, and Taylor [3] and by

Vizing [7]. We follow [3] for notation. One situation where list coloring is applicable is the

process of trying to finish a proper coloring of a graph in which some vertices are already

fixed. Coloring a list assignment which assigns {1, . . . ,m} to every vertex is analogous to

ordinary proper coloring. In order to define the list chromatic number the sizes of the lists

are identical, though merely imposing a minimum required list size is also equivalent.

3

Definition 1.6. An m-assignment for G is a list assignment for G where every list has

size m.

Definition 1.7. A graph G is m-choosable if for every m-assignment L there is a proper

L-coloring of G. The list chromatic number χℓ(G) is the smallest m ∈ N such that G is

m-choosable.

One fact about the list chromatic number is that it is always greater than or equal to

the chromatic number. This is because by choosing an m-assignment which assigns the list

{1, 2, . . . ,m} to every vertex we obtain a situation which is analogous to ordinary graph

coloring.

Proposition 1.8. For every graph G, χ(G) ≤ χℓ(G).

Now that we have a definition of list chromatic number, we can define a computable

analogue of it.

Definition 1.9. A graph G is computably m-choosable if for every computable m-

assignment L there is a computable proper L-coloring of G. The computable list chromatic

number χc
ℓ(G) is the smallest m ∈ N such that G is computably m-choosable.

Again here, computable list assignments and computable L-colorings are computable

as functions: recall they map N → Pω(N) and N → N respectively.

We will also introduce a computable analogue of another variant on the chromatic

number: the coloring number.

Definition 1.10. The coloring number Col(G) of a graph G is the smallest number k such

that there exists a well-ordering of the vertices of G in which every vertex is preceded by at

most k − 1 of its neighbors.

The coloring number of a graph is the smallest upper bound on the chromatic number

that can be obtained using a greedy argument. Given a transfinite sequence in which

4

every vertex is preceded by at most k − 1 neighbors, we can k-color the vertices in the

order prescribed by the sequence, at each step choosing a different color than we used on

any preceding neighbors. Thus, χ(G) ≤ Col(G). For the exact same reason, the coloring

number is also an upper bound on the list chromatic number.

Proposition 1.11. For every graph G, χℓ(G) ≤ Col(G).

We continue this inequality chain one further, note that ∆(G) is the maximum degree

of G.

Proposition 1.12. For every graph G, Col(G) ≤ ∆(G) + 1.

Any vertex ordering will suffice to witness this.

By combining Propositions 1.8, 1.11, and 1.12, we obtain the following.

Theorem 1.13. For every graph G, χ(G) ≤ χℓ(G) ≤ Col(G) ≤ ∆(G) + 1.

Note that this holds for graphs of any cardinality.

Later, we will show this inequality holds for the computable versions of the invariants

as well.

The coloring number is also closely related to another concept called degeneracy.

Definition 1.14. A graph G is k-degenerate if every subgraph of G has a vertex with degree

at most k. The degeneracy of G, denoted d(G), is the largest k for which G is k-degenerate.

For the purposes of this paper, if Col(G) or d(G) are not finite, we will simply say

Col(G) = ∞ or d(G) = ∞.

A natural way to look at the degeneracy of a graph is to picture removing vertices

of degree k or less one at a time. If the graph is eventually empty, then the graph is

k-degenerate. Otherwise, it is not, and the connected components that remain are called

the k-cores of the graph.

This initially may not seem related to the coloring number, but from Lick and White

[6] we have the following.

5

Proposition 1.15. If G is a finite graph, then Col(G) = d(G) + 1.

The only reason they differ by one is that the definition of coloring number explicitly

includes a plus one. Aside from that, the process of removing vertices adjacent to at most

k vertices yet to be removed is exactly the same as the process of adding vertices adjacent

to at most k vertices already placed, only in reverse. A more formal proof follows.

Proof. If G is k-degenerate, an ordering which witnesses Col(G) ≤ k+1 can be constructed

backwards. Take the subgraph induced by the set of vertices not yet in the ordering, choose

one with degree at most k, and place it at the beginning of the ordering.

On the other hand, if G is not k-degenerate, find a subgraph where every vertex has

degree at least k+1. Under any vertex ordering of G, whichever element of the subgraph is

last to be enumerated will have at least k+1 preceding neighbors. Thus, Col(G) > k+1.

This correspondence also gives an efficient way of calculating Col(G) of any finite graph

G, along with finding the order witnessing the smallest value. To find Col(G), repeatedly

remove the vertex of lowest degree from G until it is empty. The highest degree of a vertex

while it is being removed is Col(G) − 1, and an order witnessing that can be obtained by

reversing the order in which the vertices were removed.

However, this does not necessarily hold for infinite graphs. A tree where every vertex

has degree k will have a degeneracy of k, but a coloring number of only 2, as the ordering

can be built up inductively starting at a root.

The other direction also fails. Erdős and Hajnal [4] give an example of a graph which

has a coloring number of 4, but for which every finite subgraph has a coloring number of 3

or less. Jura [5] provides a helpful illustration of this graph in the Appendix, from which

we can see that in any subgraph, the vertex with the lowest index will have degree at most

2. Thus, this graph has degeneracy 2 but coloring number 4.

To understand this difference better, it is helpful to introduce, from Jura [5], the linear

order coloring number.

6

Definition 1.16. The linear order coloring number ColLO(G) of a graph G is the smallest

k ∈ N such that there exists a linear ordering of the vertices of G in which each vertex is

preceded by at most k − 1 neighbors.

For this paper, if no such k exists we will consider ColLO(G) = ∞.

Since Col(G) is such a minimum taken only across well-orderings, the following is

clear.

Proposition 1.17. For every graph G, ColLO(G) ≤ Col(G).

Since on a finite set, all linear orderings are well-orderings, we have the following.

Proposition 1.18. For every finite graph G, ColLO(G) = Col(G).

In [5], the following is proved.

Proposition 1.19. ColLO(G) ≤ k if and only if ColLO(H) ≤ k for every finite subgraph

H of G.

The following is a little more difficult.

Proposition 1.20. For every graph G, ColLO(G) ≤ d(G) + 1.

Proof. We claim that a graph is k-degenerate if and only if there is a vertex ordering which

witnesses ColLO(G) ≤ k + 1 whose order type is dual to a well-ordering.

Let G be k-degenerate. Form a transfinite sequence {vα} by letting vα be the vertex of

smallest degree after the vertices {vλ | λ < α} are removed. This is a vertex well-ordering

in which each vertex is succeeded by at most k neighbors, so by reversing it we obtain an

ordering witnessing ColLO(G) ≤ k + 1, whose order type is dual to a well-ordering.

Now, let G have an ordering witnessing ColLO(G) ≤ k + 1, whose order type is dual

to a well-ordering. Let H be an arbitrary subgraph of G. Choose the vertex in H which

is last in this ordering. Since it has at most k preceding neighbors, and all vertices in H

precede it, its degree in H is at most k. Thus, G is k-degenerate.

7

Interestingly, ColLO still fits in between χℓ(G) and Col(G).

Proposition 1.21. For every graph G, χℓ(G) ≤ ColLO(G).

Proof. Let ColLO(G) = k. Then, for every finite subgraph H of G, ColLO(H) ≤ k. By

Proposition 1.18, this means Col(H) ≤ k, and by Proposition 1.11, χℓ(H) ≤ k. Finally,

we will later prove Proposition 5.3, which proves that since χℓ(H) ≤ k for every finite

subgraph H of G, χℓ(G) ≤ k.

Now, we introduce a result from Erdős and Hajnal [4].

Proposition 1.22. If every finite subgraph G′ of G has Col(G′) ≤ k with k ≥ 2, then

Col(G) ≤ 2k − 2.

By combining Proposition 1.19 and Proposition 1.18, we can see that ColLO(G) is

the maximum of Col(H) for every finite subgraph H of G. If no such maximum exists,

ColLO(G) = ∞. Thus, we can reformulate Proposition 1.22 in the following way.

Proposition 1.23. For every non-empty graph G, Col(G) ≤ 2ColLO(G)− 2.

This bound is also tight, as [4] shows that for every k ≥ 3 there exists a countable

graph G such that Col(G) = 2k − 2 but for every finite subgraph H of G, Col(H) = k.

Now, we will move on to the computable coloring number. We define the computable

coloring number Colc(G) the same way as the coloring number, except that the vertex

ordering must be a computable ordering:

Definition 1.24. The computable coloring number Colc(G) of a graph G is the least number

k such that G has a computable vertex ordering f : N → V (G) in which each vertex is

preceded by at most k − 1 of its neighbors.

Since in this paper V (G) is always N, a vertex ordering is a permutation of N. However,

we will consider f(n) to be the nth vertex in the ordering for every n.

8

One potential problem is that the coloring number Col(G) quantifies over all vertex

well-orders. This raises the concern that there might be a graph with Col(G) < Colc(G) not

due to any computability properties of G, but because the vertex ordering which witnesses

Col(G) is a well order of a type other than ω. Fortunately, from [4] we have the fact that

when |V (G)| = κ, there is always an ordering of order type κ which witnesses Col(G).

When V (G) is countable, this means an ordering f : N → V (G).

It would be interesting if an analogue of this result were to hold for the computable

coloring number.

Question 1.25. Let G be a graph, let α be a computable ordinal, and let k ∈ N. Let

f : α → V (G) be any computable well-ordering of the vertices of G such that every vertex

is preceded by at most k of it’s neighbors. Is Colc(G) ≤ k + 1?

However, if this fails, it is not clear whether such an ordering would imply a way to

properly, computably (k + 1)-color the vertices of a graph even in the case that α = ω2.

Just as with the chromatic number, the computable coloring number is never less than

the coloring number.

Proposition 1.26. For every graph G, Col(G) ≤ Colc(G).

This is clear as Colc(G) is a minimum across computable orderings, while Col(G) is a

minimum across all orderings.

On the other hand, whether χℓ(G) ≤ χc
ℓ(G) is not at all clear. In order to have

χc
ℓ(G) < χℓ(G), we would need χℓ(G) to be witnessed only by non-computable list assign-

ments. There would also need to be no computable (χℓ(G))-assignments which despite

being colorable are not computably colorable.

Question 1.27. Does there exist a graph G for which χc
ℓ(G) < χℓ(G)?

These computable graph invariants are easier to understand with respect to each other,

the analogue of Theorem 1.13 still holds.

9

Theorem 1.28. For every graph G, χc(G) ≤ χc
ℓ(G) ≤ Colc(G) ≤ ∆(G) + 1.

Proof. To show χc(G) ≤ χc
ℓ(G), let k = χc

ℓ(G). Let L(v) = {1, . . . , k} for every v in V (G).

Then, L(v) must have a computable coloring, which is also a computable k-coloring for G.

To show χc
ℓ(G) ≤ Colc(G), let k = Colc(G), let L be a computable k-assignment for G,

and let f : N → N be a computable vertex ordering of G in which each vertex is preceded

by at most k − 1 neighbors. Then, we can L-color G by assigning to f(1) the first color

in L(f(1)), and assigning to f(n + 1) the first color in L(f(n + 1)) not already used by

preceding neighbors.

Finally, Colc(G) ≤ ∆(G) + 1 follows from the fact that in any computable vertex

ordering, each vertex will clearly be preceded by at most ∆(G) of it’s neighbors.

One immediate consequence of this is that any graph with bounded vertex degree has

finite computable chromatic number. Another is imposing some additional requirements

on any graph G which might satisfy χℓ(G) > χc
ℓ(G). G would then satisfy χ(G) ≤ χc(G) ≤

χc
ℓ(G) < χℓ(G) ≤ Col(G) ≤ Colc(G).

10

CHAPTER 2

SEPARATING THE COMPUTABLE INVARIANTS FROM EACH OTHER

Now that our graph invariants are related by a chain of inequalities, it is natural to

ask how far each one can be separated from the next. The only case in which χ(G) = 1 is

for a graph with no edges, so every component of our chain must be at least 2. Thus, we

seek to find examples for which one component on the chain is 2 but the next is ∞.

Proposition 2.1. There exists a graph G with Col(G) = Colc(G) = 2 but ∆(G) = ∞.

Proof. Let G have edge set E(G) = {{1, v} | v ≥ 2}. Then, the ordering f(n) = n witnesses

Colc(G) = 2 but ∆(G) = ∞.

Proposition 2.2. There exists a graph G with χ(G) = χc(G) = 2 but χℓ(G) = χc
ℓ(G) = ∞.

Proof. We create a complete bipartite graph with infinite partite sets. Let E(G) = {{u, v} |

u odd, v even}. To show that χc
ℓ(G) ̸= k for every k ∈ N, we need only look at finite

subgraphs of G. From [3] we have that the graphKm,m is not k-choosable whenm =
(
2k−1
k

)
.

Let L be a list assignment of the subgraph of G induced by {1, 2, . . . , 2m} which is not

k-colorable. Any computable extension of L to N will show χc
ℓ(G) > k.

In this case we leveraged a well known finite construction for separating χ(G) and

χℓ(G): complete bipartite graphs. Unfortunately, there is no such construction for sepa-

rating χℓ(G) and Col(G).

Theorem 2.3. If G is a graph with χℓ(G) = 2, then Col(G) ≤ 3.

It is helpful if G is connected, so we begin with the following.

Lemma 2.4. Col(G) = sup{Col(Gα)}, where {Gα}α∈J is the set of connected components

of G.

11

Proof. Col(G) is at least as large as each Gα, as an ordering which witnesses Col(G) ≤ k

can be restricted to an ordering which witnesses Col(Gα) ≤ k. We may assume J is an

initial segment of the ordinals. Order the vertices of G first by the connected component

Gα they belong to, and then by their position in an ordering which witnesses Col(Gα). The

result is a vertex well-ordering which witnesses Col(G) = sup{Col(Gα)}.

Now, we move on to proving Theorem 2.3.

Proof. We may assume G is connected, otherwise analyze its connected components. In

[3], it is proved that for finite connected graphs H, χℓ(H) = 2 if and only if H is either

1-degenerate or has a 1-core of C2n+2 or Θ2,2,2n for some n ≥ 1.

Because these cores are themselves 2-degenerate, this is sufficient when G is finite.

Infinite graphs with χℓ(G) = 2 may not be k-degenerate for any k at all, for example a tree

where every vertex has (k + 1) neighbors, so we need to modify our approach.

If G has no cycles, then it is a tree. We will prove later in Proposition 3.1 that this

means Col(G) = 2, so we are done.

G cannot have infinitely many cycles. Suppose it does, choose 4 of these cycles arbi-

trarily. Let G′ be a finite subgraph of G containing these cycles along with paths connecting

them if they are not already connected. G′ is a finite connected graph with χc
ℓ(G) = 2,

so the 1-core of G′ must be one of the permitted 1-cores. However, every cycle in G′ will

remain in the 1-core of G′, and all of the permitted 1-cores have less than 4 cycles.

If G has finitely many cycles, we can consider a finite subgraph G′ which contains

every cycle of G, along with paths connecting them. Now the 1-core of G′ is precisely the

subgraph induced by vertices of G which are contained in cycles, showing that the cycles

of G-form an allowed 1-core.

Now, we modify G by identifying this entire core as a single vertex, which turns G into

a tree T . We fix this vertex as the root of our new tree, and give an ordering witnessing

Col(T) = 2 starting with our root as prescribed by Proposition 3.1. By replacing the root

12

vertex in this ordering by an ordering for the cycles of G which witnesses a coloring number

of 3, we obtain a vertex ordering for G which shows Col(G) ≤ 3.

This opens the door for some questions.

Question 2.5. For what values k ≥ 3 does χℓ(G) = k imply an upper bound on Col(G)?

Thanks to Proposition 1.22 we can restrict our view to finite graphs, an upper bound

for the coloring number of finite k-choosable graphs automatically gives a higher upper

bound for k-choosable infinite graphs.

Question 2.6. Does χc
ℓ(G) = 2 imply any upper bound on Colc(G)?

13

CHAPTER 3

SEPARATING THE ORDINARY INVARIANTS FROM THE

COMPUTABLE INVARIANTS

Now we will look at another kind of separation: separating the graph invariants from

their computable counterparts. The strongest way to do this is to find a graph where

Col(G) = 2 but χc(G) = ∞.

Fortunately, there is a construction based on [1] which works for this purpose. The

graph in the paper has χ(G) = 3 and χc(G) = ∞, but by performing a similar construction,

we can create a forest with χc(G) = ∞, at the cost of disconnecting the graph.

Proposition 3.1. A graph G is a forest if and only if Col(G) = 2.

Proof. Fix a root of every component of G. Let (S0,≤0) be the set of roots equipped with a

well-order. For n ∈ N, let (Sn,≤n) be the set of vertices at distance n from a root equipped

with a well-order. Then we well-order the vertices of G by ordering u before v if u is closer

to a root than v, or if they are both in the same Sn, ordering them according to ≤n. Then,

each vertex v has at most one preceding neighbor: the first step in the path from v to a

root.

The other direction is easy. Suppose G had a cycle, then for any vertex ordering the

vertex in the cycle which is last is adjacent to both of its neighbors in the cycle.

Theorem 3.2. There exists a computable graph G with Col(G) = 2 but χc(G) = ∞.

Proof. The following proof is a modification of Bean’s proof that there exists a connected,

planar, computable graph with chromatic number 3 but infinite computable chromatic

number [1]. The construction is also very similar to one from Jura [5], which shows that

there is a computable forest for which any computable linear ordering must have vertices

preceded by arbitrarily many neighbors.

14

Consider a game between two players: Player 1 and Player 2. The game starts with a

set of n! disjoint vertices for some n ∈ N. Player 2 will color these vertices, and then Player

1 will introduce new vertices, connected to already existing vertices in a way that doesn’t

form a cycle. Each time Player 1 introduces a new vertex, Player 2 must immediately color

it.

Player 1’s goal is to force Player 2 to use as many colors as possible, and indeed they

can force at least n+1 different colors: First, Player 1 will divide the vertices into n groups

of size (n−1)! and force Player 2 to use n colors for each group. In order to avoid immediate

loss, Player 2 must use the same n colors for every group. Player 1 then wins by creating

a vertex and connecting it to a vertex of color i in the ith group for every 1 ≤ i ≤ n.

Now, to use this game to construct a graph, fix a computable enumeration of partial

computable functions {φe | e ∈ N}. We will construct a graph G in stages: at stage s,

start by adding a group of s! new vertices to the graph. The subgraph we will eventually

build off these vertices, we will call Gs. For each i ≤ s, run φi for s steps on every vertex

of Gi. φi will play as player 2, and we play as player 1, meaning we do not take any action

until every vertex in Gi is colored, at which point we add an additional vertex into Gi and

connect it according to the winning strategy we devised earlier.

This completes the construction. Suppose that G had a computable k-coloring f . We

find the first φe which is equal to f and for which e ≥ k. (Note that there are infinitely

many such φe). The subgraph Ge has been constructed so that it is impossible for φe to

have colored it using less than e+ 1 colors, which is a contradiction.

G is also computable: to decide if an edge {u, v} with u < v is in G, follow the

construction of the graph until v is added and check if it is connected to u at that moment.

This works because edges between preexisting vertices are never added at later stages.

Corollary 3.3. There exists a computable connected graph G with Col(G) = 3 but χc(G) =

∞.

15

Proof. Take the construction from Theorem 3.2, add a single extra vertex, and connect it

to every other vertex. Now, Col(G) = 3 as the graph clearly contains cycles, and we can

take any ordering witnessing Col(G) = 2 and add our extra vertex at the beginning to

witness Col(G) = 3.

This is also the best we can do for connected graphs, based on the following well-known

result

Proposition 3.4. If G is computable, connected and χ(G) = 2, then χc(G) = 2.

Proof. Fix a vertex v, color it 1, and color every other vertex w by finding a path from v

to w and coloring w with 1 if the path length is even and 2 if it is odd.

This can be slightly generalized as follows

Corollary 3.5. If G is computable, composed of finitely many connected components, and

χ(G) = 2, then χc(G) = 2.

Proof. By fixing a vertex in every connected component, we can compute which component

an arbitrary vertex is in by searching until we find a path to a fixed vertex. Then, we choose

colors for all our fixed vertices and proceed the same way as with Proposition 3.4.

Interestingly, this turns out to hold for the list chromatic number and coloring number

as well.

Proposition 3.6. If G is computable, composed of finitely many connected components,

and Col(G) = 2, then Colc(G) = 2.

Proof. From Proposition 3.1 we know that G must be a forest. Fix a root in each tree

in the forest. Start the ordering by listing every root. Then, repeatedly take the vertex

of smallest index which has not been listed yet, find a path connecting it to a root, and

append this path to the current list, starting with the first vertex in the path which hasn’t

already been listed and ending with the vertex of smallest index. This computable ordering

witnesses Colc(G) = 2.

16

Proposition 3.7. If G is computable, composed of finitely many connected components,

and χℓ(G) = 2, then χc
ℓ(G) = 2.

Proof. In the proof of Theorem 2.3, we show that every connected graph with χℓ(G) = 2

must either have no cycles or a finite connected structure of cycles. Given a list assignment

L, we can computably L-color every cycle in every connected component, since this requires

only a finite amount of information. Then, as in the proof of Theorem 2.3, we can identify

each structure of cycles as a single vertex. Then, repeatedly take the vertex of smallest

index which has not been colored yet, find a path connecting it back to a cycle, and color

the vertices of this path greedily, starting with the first vertex which hasn’t been colored

yet and ending with the vertex of smallest index. This proves χc
ℓ(G) = 2.

17

CHAPTER 4

SEPARATIONS WITH FINITE GAPS

Another way to examine the invariants is to try creating finite gaps.

Proposition 4.1. For any m and n with n ≥ m ≥ 2 there exists a computable graph G

with χ(G) = χc(G) = m and χℓ(G) = χc
ℓ(G) = n.

To prove this, we will need the following well known example in list coloring

Lemma 4.2. Kn,nn has chromatic number 2, but list chromatic number n+ 1.

Proof. That Kn,nn is (n + 1)-choosable comes from Col(G) = n + 1, witnessed by any

ordering which starts with the size n partite set. That Kn,nn is not n-choosable comes from

a list assignment L which assigns disjoint sets to every vertex in the size n partite set.

Then, there are nn possible ways to L-color these vertices. Then, each vertex in the size

nn partite set can be made to restrict exactly one of these colorings.

For example, in K3,27, we can assign the vertices in the size 3 set the lists

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}. Then, each vertex in the size 27 set would be assigned a list

consisting of one element in each of {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}.

This achieves χ(G) = 2, χℓ(G) = n. To achieve χ(G) = m,χℓ(G) = n we can take the

disjoint union of Kn,nn and Km. To make our graph infinite, we can add an infinite number

of isolated vertices. Since the graph is finite, we don’t need to worry about the computable

variants being different.

Proposition 4.3. For any m and n with n ≥ m ≥ 2 there exists a computable graph G

with Col(G) = Colc(G) = m and ∆(G) + 1 = n.

Proof. Let G = Km−1,n−1. Using an ordering which starts with the size m− 1 set, we find

Col(G) ≤ m. Since the minimum degree of G is m − 1, the last vertex in any ordering

18

must have at least m − 1 preceding neighbors, so Col(G) ≥ m. Thus, Col(G) = m, and

∆(G) + 1 = n.

Every invariant can be separated from it’s computable counterpart using the same

modification of the construction in Theorem 3.2.

Proposition 4.4. For any m and n with n ≥ m ≥ 2 there exists a computable graph G

with χ(G) = χℓ(G) = Col(G) = m and χc(G) = χc
ℓ(G) = Colc(G) = ∆(G) + 1 = n.

Proof. Repeat the construction used in Theorem 3.2 with the following modification: In-

stead of adding s! new vertices at stage s, we add (n−1)!. This guarantees that Player 2 is

forced to use n colors, so for any φe which is a computable (n− 1)-coloring of G, there is a

subgraph Ge on which it is not proper. Thus, χc(G) ≥ n. The final vertex in any completed

subgraph Ge will be adjacent to n − 1 previously placed vertices, and every vertex before

it will be adjacent to at most n− 2 previously placed vertices and at most 1 vertex which

will be placed in the future. Thus, ∆(G) + 1 = n. Once again, if m = 2 we are finished,

and if not, take the disjoint union with Km.

19

CHAPTER 5

ADDITIONAL REMARKS

So far, we have found examples of graphs which separate the computable invariants

from each other in a way unrelated to computability, and we have found one graph which

maximally separates the invariants from the computable invariants.

Proposition 5.1. There exists a graph G with χ(G) = 2, χc(G) = ∞, and χℓ(G) = ∞.

Proof. From Proposition 2.2 we can take a graph G1 with χ(G1) = 2 and χℓ(G1) = ∞.

From Theorem 3.2 we can take a graph G2 with χ(G2) = 2 and χc(G2) = ∞. Then, the

disjoint union G of G1 and G2 will satisfy χ(G) = 2, χc(G) = ∞, and χℓ(G) = ∞.

This graph, which is easy to color, but hard to list color and hard to computably color

comes as no surprise. Much more interesting would be a graph which is easy to computably

color and easy to list color, but hard to computably list color.

Question 5.2. Does there exist a graph G for which χc(G) and χℓ(G) are finite but χc
ℓ(G) =

∞? If so, how small can χc(G) and χℓ(G) be?

The De Bruijn–Erdős theorem states that if every finite subgraph of G is k-colorable,

then G is also k-colorable.

Proposition 1.22, and the fact that that bound is tight are results of Erdős and Hajnal

[4], which achieve the best possible equivalent result for the coloring number.

For list coloring, the De Bruijn–Erdős theorem generalizes in it’s full strength.

Proposition 5.3. If G is a graph and every finite subgraph of G is k-choosable (k ∈ N),

then G is k-choosable.

Proof. Let L be a k-assignment to G. Let X =
∏

v∈V (G) L(v) be a topological space with

the product topology, where each L(v) is given the discrete topology. Then the elements

20

of X correspond to L-colorings of G, and X is compact by Tychonoff’s theorem. For every

edge e = (u, v) in G, let Xe = {x ∈ X | xu ̸= xv}. Then,

X −Xe =
⋃

c∈L(u)∩L(v)

{x ∈ X | xu = c ∧ xv = c}

Since this is a union of open sets it is open, and hence every Xe is closed.

Note that Xe is the set of colorings which satisfy the edge e. If S ⊂ V (G) is finite

then
⋂

e∈S Xe is the set of L-colorings that satisfy the finite set of edges S. This set is

non-empty because restricting L to the subgraph induced by S creates a k-assignment of

the subgraph, which can be colored since the subgraph must be k-choosable. Then, the

collection {Xe}e∈E(G) has the finite intersection property. Since X is compact, that means

it has non-empty intersection. Then, any element of this intersection corresponds to a

proper L-coloring of G.

This allows us to find another example of a graph for which χℓ(G) ≤ 5 but χc
ℓ(G) = ∞

without doing any construction ourselves. From Dörre [2], we have that every finite planar

graph is 5-choosable. Combining this with Proposition 5.3 gives us that infinite planar

graphs are also 5-choosable. In [1], a planar graph with χc(G) = ∞ is constructed, so this

graph must have χℓ(G) ≤ 5 and χc
ℓ(G) = ∞.

21

REFERENCES

[1] Dwight R. Bean. Effective coloration. The Journal of Symbolic Logic, 41(2):469–480,

1976.

[2] Peter Dörre. Every planar graph is 4-colourable and 5-choosable a joint proof. Fach-

hochschule Südwestfalen (University of Applied Sciences)(unpublished note), 2004.

[3] Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In Proceed-

ings of the West Coast Conference on Combinatorics, Graph Theory and Computing

(Humboldt State Univ., Arcata, Calif., 1979), volume XXVI of Congress. Numer., pages

125–157. Utilitas Math., Winnipeg, MB, 1980.

[4] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Math-

ematica Academiae Scientiarum Hungaricae, 17(1–2):61–99, 3 1966.

[5] Matthew A Jura. Reverse Mathematics and the coloring number of graphs. University

of Connecticut, 2009.

[6] Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian Journal of Mathe-

matics, 22(5):1082–1096, 1970.

[7] Vadim G Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz,

29(3):10, 1976.

22

VITA

Graduate School
Southern Illinois University Carbondale

Seth Thomason
seth.thomason.math@gmail.com

Southern Illinois University Carbondale
Bachelor of Science, Mathematics, August 2023

Thesis Paper Title:
On the Computable List Chromatic Number and Computable Coloring Number

Major Professor: Dr. W. Calvert

Publications:

Kaul, Hemanshu & Maxfield, Michael & Mudrock, Jeffrey & Thomason, Seth. (2023). The
DP color function of clique-gluings of graphs. Enumerative Combinatorics and Applications.
4. Article #S2R11. 10.54550/ECA2024V4S2R11.

Bui, Manh & Kaul, Hemanshu & Maxfield, Michael & Mudrock, Jeffrey & Shin, Paul &
Thomason, Seth. (2023). Non-chromatic-Adherence of the DP Color Function via Gener-
alized Theta Graphs. Graphs and Combinatorics. 39. 10.1007/s00373-023-02633-z.

Becker, Jack & Hewitt, Jade & Kaul, Hemanshu & Maxfield, Michael & Mudrock, Jef-
frey & Spivey, David & Thomason, Seth & Wagstrom, Tim. (2022). The DP color
function of joins and vertex-gluings of graphs. Discrete Mathematics. 345. 113093.
10.1016/j.disc.2022.113093.

Mudrock, Jeffrey & Thomason, Seth. (2021). Answers to Two Questions on the DP Color
Function. The Electronic Journal of Combinatorics. 28. 10.37236/9863.

23

	ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE COLORING NUMBER
	Recommended Citation

	tmp.1728681842.pdf.Vshbt

