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AN ABSTRACT OF THE THESIS OF 

Shasta S. W. Corvus, for the Master of Science degree in Forestry, presented on April 9, 2024, at 

Southern Illinois University Carbondale. 

 

TITLE: PASSIVE ACOUSTIC MONITORING: CONSIDERATIONS FOR RECORDING 

UNITS, BIRDNET SETTINGS, AND FILTERING METHODS FOR LONG-TERM  

AVIAN POPULATION MONITORING 

 

MAJOR PROFESSOR: Dr. Brent Pease 

This research investigated several aspects of passive acoustic monitoring (PAM) which 

were previously unexplored or understudied. A comparison of autonomous recording units 

(ARUs) for use with BirdNET for the purpose of bird monitoring was conducted. Four ARUs 

were compared, including AudioMoth, SM4, SMMicro, and SwiftOne. We found that, of the 

performance metrics for which ARU choice made a statistically significant difference (P>0.01), 

which included sensitivity, specificity, F1 harmonic mean, and Matthews Correlation Coefficient, 

(but not precision: P = 0.94), AudioMoth had the best performance for all statistically significant 

performance metrics except for specificity, for which SMMicro had the highest. The same audio 

was then processed using 18 combinations of Overlap and Sensitivity, including default settings. 

We found that Overlap and Sensitivity values were highly significant (P>0.001) for all 

performance metrics: precision, sensitivity, specificity, F1 harmonic mean, and Matthews 

Correlation Coefficient. No individual Overlap-Sensitivity setting combination performed 

outperformed others in most of the performance metrics; however, in general, as Overlap or 

Sensitivity increased, the number of true and false positive species reports increased while the 

number of false negatives decreased. Four confidence-based threshold types were then used to 

filter BirdNET output to compare threshold performances, comparing two arbitrary thresholds 

and two species-specific thresholds which were calculated using manual validation data. Of the 

thresholds tested, one of the arbitrary threshold types and one of the species-specific threshold 
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types achieved a precision ≥ 0.95. We hope this research will help guide PAM decisions 

regarding ARU choice, BirdNET settings, and threshold type choice.  



iii 
 

ACKNOWLEDGEMENTS 

 First and foremost, I would like to thank Dr. Brent Pease, who has given me this amazing 

opportunity and has been such a patient and supportive mentor. I would like to thank my 

committee members, Dr. Charles Ruffner and Dr. Eric Holzmueller, for their time and expertise. 

I would also like to give thanks to my undergraduate professors, Dr. Sarah Ivers, the late Dr. Jon 

Bedick, and Dr. Logan Minter, for inspiring me to pursue my passion for ecology.  

 I would like to express my sincere gratitude towards the landowners who allowed us 

access to their property for our bird monitoring efforts, as this work would have been impossible 

without them. I would like to thank my lab-mate Elaine Metz, as well as our technicians, Kelsee 

Dodd, Zach Skubiszewski, and Madison Johnson, for their help in the field and in the lab. I 

would like to thank all the volunteers of both the Illinois Breeding Bird Atlas and the North 

American Breeding Bird Survey, as their hard work allowed us to pull from external sources to 

better understand long-term avian population trends.  

 Finally, I would like to give thanks to my grandpa and foster father, Ray Radabaugh Sr., 

who not only gave me a chance at life, but who has served as my role model for hard work and 

perseverance. I would not be here today if not for you. 

 

 

 

 

 

 

  



iv 
 

TABLE OF CONTENTS 

CHAPTER           PAGE 

ABSTRACT………………………………………………………………………...…………… i 

ACKNOWLEDGEMENTS…………………………………………………………..…………. iii 

LIST OF TABLES………………………………………………………………………………. vi 

LIST OF FIGURES……………………………………………………………………………... x 

CHAPTERS 

CHAPTER 1 – THE EFFECTS OF AUTONOMOUS RECORDING UNIT CHOICE 

AND BIRDNET-ANALYZER SETTINGS ON BIRDNET  

PERFORMANCE……………………………………………………………….. 1 

Introduction………………………………………………………...……. 1 

Methodology…………………………………………………...………..  4 

Results……………………………………………………………...……. 7 

Discussion………………………………………………….…...………. 11 

   Conclusion…………………………………………………………...…. 16 

   Tables and Figures……………………………………………...………. 19 

CHAPTER 2 – COMPARING METHODS OF STREAMLINING BIRDNET 

ANALYZER VALIDATION FOR LONG-TERM AVIAN POPULATION 

MONITORING……………………………………………………….……….... 25 

Introduction…………………………………………………………....... 25 

Methodology……………………………………………………………. 28 

Results…………………………………………………………………... 36 

   Discussion………………………………………………………………. 42 



v 
 

   Conclusion……………………………………………………………… 51 

   Tables and Figures………………………………………….……...…… 55 

LITERATURE CITED…………………………………………………….………....…….…... 71 

APPENDICES 

APPENDIX A – THE EFFECTS OF AUTONOMOUS RECORDING UNIT CHOICE 

AND BIRDNET-ANALYZER SETTINGS ON BIRDNET  

PERFORMANCE………………………………………………………..……... 80 

APPENDIX B – COMPARING METHODS OF STREAMLINING BIRDNET 

ANALYZER VALIDATION FOR LONG-TERM AVIAN POPULATION..….. 85 

VITA……………………………………………………………………………….…….……... 91

  



vi 
 

LIST OF TABLES 

TABLE                         PAGE 

Table 1.1. Single factor (Unit) mixed model nested ANOVA between all ARUs for a.) 

sensitivity, b.) precision, c.) specificity, d.) F1 harmonic mean, and e.) Matthews  

correlation coefficient. Date (of visit) is nested within site (of visit). Type III  

ANOVA with Satterthwaite’s method was used……………………………………..…. 19 

Table 1.2. Three-way, randomized block design ANOVA test results testing the effect of the 

Sensitivity and Overlap settings on a.), the number of false positive species reported  

per site visit across all 36 site visits and b.), the number of true positive species  

reported per site visit across all 36 site visits……………….………………….…....… 20 

Table 2.1. Single factor (Threshold) mixed-effects nested ANOVA to compare effects of 

threshold type used for filtering data on: a.) the number of true positive species  

reported per visit, b.) the number of false positive species reported per visit, c.) the 

number of false negative species reported per visit, d.) sensitivity, e.) precision, f.) 

specificity, g.) F1 harmonic mean, and h.) MCC (Matthews correlation coefficient).  

Date (of visit) is nested within site (of visit). Type III ANOVA with Satterthwaite’s  

method was used. Data used was from all 36 site visits conducted between  

June 21—July 4, 2023, in Jackson County, Illinois, USA…………………....……..….. 55 

Table 2.2. Table containing P-values for all pairwise comparisons resulting from the  

Tukey’s HSD post-hoc test for threshold types, including unfiltered, 0.5-filtered,  

0.75-filtered, Modeled Threshold, and FP-based Threshold. P-values for the  

pairwise comparisons contrasted the significant difference between different  

threshold types on a.) the average number of true positive species reported per visit;  



vii 
 

b.) the average number of false positive species reported per visit; c.) the average 

number of false negative species reported per visit; d.) mean precision; e.) mean 

sensitivity; f.) mean specificity; g.) mean F1 Harmonic Mean; and h.) mean MCC 

(Matthews Correlation Coefficient)………………………………………………….…. 57 

Table 2.3. Table displaying the mean number of true positive (TP), false positive (FP),  

and false negative (FN) species reported per threshold type, as well as the mean  

values of precision, sensitivity, specificity, F1 harmonic mean, and MCC (Matthews  

Correlation Coefficient) for each threshold type used and for the unfiltered data (data  

pre-filtering)………………………………………………………………………..….... 60 

Table 2.4. The number of blocks each species was detected in the IBBA dataset, the 2022  

dataset, and the number of increase or decrease in blocks detected per species from  

the IBBA to 2022 dataset. Species are listed by current AOS standardized common  

names and by scientific names………………………………………….……...….….… 60 

Table 2.5. For each of the 45 IBBA primary blocks sampled, the number of hours of  

observation (hrs/block) for the IBBA survey and my 2022 survey are listed, as well as  

warbler and vireo species richness for both the IBBA survey and my 2022 survey, as  

well as Jaccard’s Similarity Index (JSI), Sørensen’s Similarity Index (SSI), and the  

percentage of Species Turnover………………………………….…………..…..…..…. 62 

Table 2.6. North American Breeding Bird Survey counts for (data from Illinois routes only)  

by species for 1991 and 2022. Species listed by both common name and scientific  

name……………………………………………………………………………..…….... 65 

Table A.1. Number of detections per detection source (point count, AudioMoth output,  

SM4 output, SMMicro output, or SwiftOne output) across 36 site visits between  



viii 
 

June 21—July 4, 2023, in Jackon County, Illinois, USA………………..……….…..… 80 

Table A.2. Average number of true positive species (per visit), false positive species (per  

visit), false negative species (per visit), precision, sensitivity, specificity, F1 harmonic  

mean, and MCC (Matthews correlation coefficient) by unit. All values were rounded  

to the second decimal place. Note that all values displayed were calculated using data  

from all 36 site visits…………………………………………….…..………….….....… 83 

Table A.3. The mean number of true positive, false positive, and false negative species  

reported per visit for each Overlap and Sensitivity setting combination tested. All  

values were rounded to the second decimal place. Mean values were obtained by 

aggregating individual site visit values for each metric across all 36 site visits. All  

audio was collected using an AudioMoth, and was collected in Jackson County,  

Illinois, USA, between June 21—July 4, 2023…………………………..……………... 83 

Table A.4. The mean precision, sensitivity, specificity, F1 (F1 harmonic mean), and MCC 

(Matthews Correlation Coefficient) for each Overlap and Sensitivity setting  

combination tested. Setting combination Overlap = 0, Sensitivity = 1 is the default  

BirdNET settings. All values were rounded to the second decimal place. Mean values 

were obtained by aggregating individual site visit values for each metric across all 36  

site visits. All audio was collected using an AudioMoth, and was collected in Jackson  

County, Illinois, USA, between June 21—July 4, 2023…………..…………...……..… 84 

Table B.1. List of all threshold values by threshold type for all species included in point  

counts. Threshold values containing NA could not be calculated from my validation  

data……………………………………………………………………………...…...….. 85 

Table B.2. Showing population trends identified by different sources (IBBA—2022,  



ix 
 

Illinois-only BBS (1991—2022), and Partners in Flight) for all analyzed warbler  

and vireo species listed by common name and scientific name. Blue cells represent  

an increase over time, red cells represent a decrease over time, and white cells  

represent no change or uncertainty. Illinois Breeding Bird Atlas (IBBA) data used was  

collected between 1986—1991 for the 45 blocks which I resampled in 2022 using  

ARUs and filtered BirdNET output. The North American Breeding Bird Survey data  

used was for the state of Illinois only, and from 1991—2022. Partners in Flight (PIF)  

data show continental-level trends………………………..………………….…..……... 87 

Table B.3: Comparing the preferred habitat of each species with its respective gain/loss of  

primary blocks in occurrence from the Illinois Breeding Bird Atlas to 2022…..…....…. 87 

Table B.4: Comparing the warbler and vireo species richness between private and public  

blocks from both the Illinois Breeding Bird Atlas (IBBA) and 2022 survey datasets…. 88 

  



x 
 

LIST OF FIGURES 

FIGURE           PAGE 

Figure 1.1. False negative (FN), false positive (FP), and true positive (TP) averages  

among AudioMoth (leftmost; red), SM4 (second to leftmost; orange), SMMicro (third  

to leftmost; light blue), and SwiftOne (rightmost; dark blue). Data represents average  

number per detection type per visit for 36 visits conducted from June 21—July 4, 2023  

in Jackson County, Illinois, USA. Detections were produced using audio from each of  

the four ARUs and using BirdNET-Analyzer at default settings…………………....….. 21 

Figure 1.2. Precision, Sensitivity, Specificity, F1 harmonic mean, and MCC (Matthews  

Correlation Coefficient) averages among AudioMoth (leftmost; red), SM4 (second to  

leftmost; orange), SMMicro (third to leftmost; light blue), and SwiftOne (rightmost;  

dark blue). Data represents average value per performance metric per visit for 36  

visits conducted from June 21—July 4, 2023 in Jackson County, Illinois, USA. 

Detections were produced using audio from each of the four ARUs and using BirdNET- 

Analyzer at default settings……………………………….…………………..…….…... 22 

Figure 1.3. Confusion matrix heatmaps showing the effects of different Sensitivity and  

Overlap setting combinations on the mean number of true positive species reported  

(TP), false positive species reported (FP), true negative species reported (TN), and  

false negative species reported (FN). Darker colors indicate greater values. Values  

depicted were averaged across all 36 site visits. Only audio collected via AudioMoth  

was used for this analysis, and audio from each of the 36 visits were processed with  

all 18 combinations of Overlap and Sensitivity tested. Audio was collected during 36 

visits between June 21—July 4, 2023 in Jackson County, Illinois, USA…………...….. 23 



xi 
 

Figure 1.4. Confusion matrix heatmaps showing the effects of different Sensitivity  

and Overlap setting combinations on the mean number of true positive species  

reported (TP), false positive species reported (FP), true negative species reported  

(TN), and false negative species reported (FN) for the Pre-threshold dataset. To 

accurately compare the effects of implementing a species-specific threshold, the pre- 

threshold dataset only included species which had species-specific validations and  

were present during the point counts were included in the making of these heat maps.  

The data shown was not filtered using species-specific thresholds. Darker colors  

indicate greater values. Values depicted are means across all 36 site visits…….....…… 24 

Figure 2.1. Boxplots depicting the number species detected per visit made by BirdNET,  

including true positive species detected (left), false positive species (middle), and  

false negative species errors (right). Values depicted represent all threshold types, 

including, from left to right: Unfiltered (white), 0.5 (orange), 0.75 (red), Modeled  

(light blue), and FP-based (dark blue). Audio data was validated using point count  

data collected concurrently for the full duration of each visit. Six sites were visited  

six times each for a total of 36 site visits used for this data. Data was collected in  

Jackson County, Illinois, USA, between June 21 to July 4, 2023……………….…….... 67 

Figure 2.2. Boxplots comparing performance metrics precision, sensitivity, specificity, F1  

harmonic mean, and MCC (Matthews Correlation Coefficient). Values depicted for  

all five threshold types, including unfiltered. Values depicted represent all threshold  

types, including, from left to right: Unfiltered (white), 0.5 (orange), 0.75 (red),  

Modeled (light blue), and FP-based (dark blue). Six sites were visited six times each  

for a total of 36 site visits used for this data. Data was collected in Jackson County,  



xii 
 

Illinois, USA, between June 21 to July 4, 2023………………………………….……... 68 

Figure 2.3. Map depicting primary blocks from the Illinois Breeding Bird Atlas which were  

re-sampled in 2022. Block coloration dependent upon the number of warbler and  

vireo species lost or gained from the last Breeding Bird Atlas (1986—1991) to 2022. 

Primary blocks are overlaid over map depicting privately owned, non-protected land 

(light green) versus publicly owned and protected land (dark green). Map depicts the  

11 southernmost Illinois counties…………………………………………………..….... 69 

Figure 2.4. Line graph depicting positive linear relationship between the number of  

observation hours and the observed species richness. Passive acoustic monitoring  

(PAM) data collected in 2022 shown in red. Point count data collected during the  

IBBA shown in blue……………………………………...……………..…………...….. 70 

Figure B.1. Logistic regression analysis performed using 100 random detections from  

BirdNET which were manually validated. The blue line represents the relationship  

between the probability of a correction detection and the confidence score for a  

given BirdNET detection for Barred Owls. Since the blue line never reaches a  

probability of 0.95, a species-specific confidence score could not be derived for this 

species using the logistic regression analysis……………………..…….…...…………. 89 

Figure B.2. Logistic regression analysis performed using 100 random detections from  

BirdNET which were manually validated. The blue line represents the relationship  

between the probability of a correction detection and the confidence score for a  

given BirdNET detection for American Robins (Turdus migratorius). Since the blue  

line has a negative slope (implying that the probability of a BirdNET detection being  

a true positive detection decreases as the confidence score increases), a species- 



xiii 
 

specific confidence score should not be derived for this species using the logistic 

regression analysis…………………………………………………………….….…….. 90 

 

 



1 
 

CHAPTER 1 

THE EFFECTS OF AUTONOMOUS RECORDING UNIT CHOICE AND BIRDNET-

ANALYZER SETTINGS ON BIRDNET PERFORMANCE 

INTRODUCTION 

 Point counts have historically been the conventional field method for estimating avian 

population abundance and distribution, assessing species-environmental relationships, and 

understanding drivers of population change (Bibby et al., 2000). However, with the advent of 

autonomous recording units (ARUs) and rapidly developing automatic species classifiers, such 

as BirdNET Analyzer, many researchers have switched to using Passive Acoustic Monitoring 

(PAM) as an alternative approach to traditional point count methods (Kahl et al., 2021; Sugai et 

al., 2021; Shonfield et al., 2017). Recent research comparing traditional avian monitoring 

techniques with ARUs has documented that ARUs can be more cost-effective, allow for greater 

duration of observation, and reduce observer bias, among other advantages (Alquezar & 

Machado, 2015; Klingbeil & Willig, 2015; Hobson et al. 2002; Tegeler, Morrison & Szewczak, 

2012; Shonfield & Bayne, 2017). Despite these benefits, there are also potential drawbacks to 

PAM including limited detection distance of ARUs and data processing challenges (Hutto & 

Stutzman, 2009; Yip et al., 2017).  

Automatic species classifiers offer a promising path forward to alleviate the data 

processing bottleneck of acoustic recordings, as terabytes of data can be collected during a 

sampling period. Though promising, even the most reliable open-access bird sound recognizer 

currently available for general use, BirdNET Analyzer (herein, BirdNET), has an average 

precision of only 72—85% (percent of detections correctly classified) and a recall rate usual ly 

ranging from 33—84% (percent of target species vocalizations detected), highlighting the 
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continued issue of false positive and false negative errors (Pérez-Granados, 2023; Kahl et al., 

2021; Wood et al., 2022). This problem is further exacerbated in that precision may vary widely 

depending on the species being examined and the environmental conditions at the sampling 

location (Sethi et al., 2023). Although BirdNET has many advantages including its open-

accessibility, its capability of identifying more bird species than any other open-access classifier, 

as well as its ability to exceed other classifiers in average precision, it is nevertheless prone to 

producing both false positive species reports and false negative species errors (Lauha et al., 

2021; LeBien et al., 2020; Ruff et al., 2020; Kahl et al., 2021; Sethi et al., 2023). Consequently, 

identifying streamlined ways to minimize these error rates is an active area of research (e.g., 

Cole et al. 2022). Further complicating the issue of the measurement error in species classifiers is 

the growing range of sound recording hardware (i.e., ARUs) available for ecological studies 

(Toenies & Rich, 2021).  

Currently, many ARU devices are available for ecological studies, yet there is no 

consensus as to which ARU device produces the highest quality recordings for the purpose of 

using the audio obtained for analysis via BirdNET. Commonly used ARUs for avian PAM 

include the AudioMoth (Hill et al., 2018), SwiftOne (Cornell Lab or Ornithology, 2023a), and a 

range of products from Wildlife Acoustics (Wildlife Acoustics, 2023). Although an array of 

available ARU devices exist, quantitative, empirical comparisons of the impact that ARU choice 

has on BirdNET output are lacking across a range of ecosystems and recording conditions. Using 

BirdNET, Toenies and Rich (2021) documented variation in the mean number of species reported 

by the Swift Recorder, AudioMoth, SMMini, and SM3BAT. In addition, many of the recorders 

evaluated by Toenies and Rich (2021) are now “outdated,” as newer models have replaced most 

of the tested units. Furthermore, the SMMicro, SM4, and SwiftOne—all newer versions of the 
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units examined by Toenies and Rich—have yet to be assessed. Furthermore, given that Toenies 

and Rich (2021) performed their test in Monterey County, CA—a location which has a unique 

avian species composition that differs vastly from most of the United States and North 

America—it is important that additional research be conducted to ascertain whether their results 

hold true for different species and environmental conditions. 

 Along with hardware comparison, little guidance on optimal BirdNET settings exists in 

the literature. Although research on mitigating false positive errors is ongoing, finding ways to 

mitigate false negative errors when using BirdNET has received less attention, but could 

potentially be remediated using features currently available in BirdNET. Specifically, BirdNET 

offers two fine-tuning parameters in the classifier—Overlap and Sensitivity—that could 

minimize false negative errors. BirdNET’s Overlap setting controls the temporal overlap of 

prediction segments, which defaults to 0s but could be adjusted up to 2.9s (Kahl et al., 2021). 

Modifying the Overlap setting could increase detection resolution—particularly in cases in 

which there are multiple species vocalizing simultaneously (e.g., during a dawn chorus; Kahl et 

al., 2021). The Sensitivity setting aims to control detection sensitivity, which can be thought of as 

the prediction sensitivity, meaning that vocalizations (or potentially noise in general) captured on 

the recording will be more likely to lead to a species prediction than it otherwise would be with a 

lower Sensitivity setting (Kahl et al., 2021a). The impacts of adjusting the Overlap and 

Sensitivity settings are yet to be explored, as there currently exists no publications which 

investigate the effects of altering the Overlap and Sensitivity on the performance of BirdNET 

(Pérez‐Granados, 2023). It is possible that adjustments made to the Overlap and Sensitivity 

settings may reduce false negative species rates, although the affect this may also have on the 
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number of false positive species reported is likewise underexplored, highlighting an important 

yet uninvestigated aspect of BirdNET. 

 Collectively, two outstanding albeit understudied issues regarding the use of ARUs and 

BirdNET exist: 1.) uncertainty as to how ARU device quality and functionality impacts BirdNET 

performance, and 2.) the ability of BirdNET’s Overlap and Sensitivity settings to increase the 

number of true positive species reported, thereby decreasing the number of false negative 

species. Here, I describe a field trial comparing the output of BirdNET across 4 leading ARU 

devices, and a systematic analysis of various Overlap and Sensitivity setting combinations in the 

BirdNET software. Specifically, I 1.) compared the mean number of true positive, false positive, 

and false negative species between 4 ARUs: SwiftOne, AudioMoth, SM4, and SMMicro; and 2.) 

compared the effects of 18 Overlap and Sensitivity settings on BirdNET’s species report, 

comparing the average numbers of true positive and false positive species reported between 

setting combinations using audio collected from a single device type (AudioMoth), further 

comparing unfiltered output versus output filtered using a confidence-based threshold.  

METHODS 

 To test the effect of ARU quality on BirdNET performance, I deployed 4 ARU devices 

across six sampling locations for six consecutive days, each set to record 30-min sampling 

periods per visit. A single site visit consisted of deploying all 4 ARUs (SwiftOne, AudioMoth, 

SMMicro, and SM4) and concurrently conducting a point count for the duration of the ARU 

recording period. The point counts consisted of recording all bird species detected during the 30-

minute period and served as “truth” in the experiment. Although sight-only observations (e.g., 

flyovers) were noted, they were not included in the analysis. The selection of these 4 ARUs was 

guided by specific criteria: product versioning, targeted use and functionality, and cost 
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effectiveness. The SM4 was chosen due to its status as the latest iteration of the SM3, a device 

previously examined by Toenies and Rich (2021). Similarly, the SwiftOne, being the updated 

version of the Swift Recorder, was also tested. The selection of the SM Micro over the SM Mini 

was based on cost-effectiveness, being the most economical option available from Wildlife 

Acoustics. Furthermore, the SM Micro's comparable size to the AudioMoth positioned it as a 

nominal competitor in both functionality and price point (Wildlife Acoustics, 2023). Finally, I 

included the AudioMoth due to its significance as the most economical unit at the time of 

writing; this choice aims to provide valuable insights into how the AudioMoth, with its 

competitive pricing, performs in comparison to other contemporary ARUs (Hill et al., 2018). 

For deployment, the 4 ARUs were distributed equally around a center point every 90 

degrees, resulting in approximately 0.5 m from neighboring units. Each ARU was fastened 1 m 

above ground to a 1.5 m t-post using a zip tie. The units were arranged facing outward from one 

another but were close enough such that distance and direction from sound had minimal to no 

impact on species detection. Because all ARUs tested in this study except for the AudioMoth had 

an external, weatherproof casing and could be zip tied directly to the posts, the AudioMoth 

needed to be placed in sealable plastic bags alongside a silica desiccant packet prior to 

deployment; previous research suggests there is little to no loss in performance in this housing 

(Lapp et al., 2023). Each site was visited six times for 36 total site visits, producing 144 audio 

recordings (6 sites x 6 days = 36 site visits x 4 recorders = 144 audio recordings). Each recording 

occurred between the hours of 0500 and 0830, with all recordings beginning on the hour (e.g., 

0500) and recording for a total of 30 minutes. 

To compare ARU performance, all recordings were processed using BirdNET with 

default classifier settings except for the use of a custom species list. The custom species list was 
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generated using the R package rebird (package version 1.3.0; Maia et al., 2023) in Program R 

(Version 4.2.3) with the restrictions of using species reported on eBird during the past 10 years 

from June 21 to July 4, 2023 (the date range of the sampling period) in Jackson County, Illinois, 

USA (in which all sites were located;). Audio from all 4 units at each site and visit (144 files in 

total) was processed using this methodology for the ARU comparison, generating 144 unique 

BirdNET outputs. Point count data was used to verify whether a species on a given BirdNET 

species output was truly present during the recording period (true positive), not truly present 

(false positive), or truly present but not reported on BirdNET’s output (false negative).  

The number of false negative, false positive, and true positive species reported were 

calculated for each visit individually and then averaged by unit for all 36 visits. The number of 

true negative species reported were calculated for each visit individually by adding the number 

of false negative, false positive, and true positive species for that visit and subtracting the sum 

from the total number of species contained on the custom species list (121), and the true negative 

values were then averaged by unit for all 36 visits. For each unit, I calculated precision, 

sensitivity, specificity, F1 harmonic mean, and Matthews correlation coefficient (MCC) using 

data from all 36 site visits. A mixed model nested ANOVA tested the effect of ARU choice on 

performance metrics (precision, sensitivity, specificity, F1 harmonic mean, and MCC), with date 

nested within site surveyed; this model determined if ARU choice affects BirdNET performance 

metrics while accounting for random variation due to site and date differences.  

To assess the impact of adjusting Overlap and Sensitivity settings on BirdNET 

performance, I isolated recordings from the top-performing ARU in the comparison test (6 sites * 

6 visits = 36 recordings) then used 18 combinations of these settings to cover the entire range of 

setting values. Overlap controls the temporal overlap of prediction segments (0.0 to 2.9, default 
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0.0; Kahl et al., 2021) and Sensitivity influences whether BirdNET will generate a prediction for 

an image present on the spectrogram (0.5 to 1.5, default: 1.0; Kahl et al., 2021). I tested Overlap 

settings 0.0, 0.5, and 1.5 with all Sensitivity settings (0.5, 1.0, 1.5, 2.0, and 2.5) resulting in 18 

combinations. Running all 18 combinations on the 36 recordings generated 648 species outputs 

(18 settings * 36 recordings). The same custom species list used for the ARU comparison tests 

was also used in this analysis.  

The average number of false positive, true positive, false negative, and true negative 

species from the BirdNET outputs collected from all visits using the AudioMoth were compared 

between all 18 combinations to generate a confusion matrix heatmap to show the effects of 

changing these settings on BirdNET output. A three-way ANOVA was used to discern 1.) 

whether Overlap and Sensitivity settings have a significant effect on the number of true positive 

species reported per visit, and 2.) whether Overlap and Sensitivity have a significant effect on the 

number of false positive species reported per visit. The three-way ANOVA method was 

conducted twice, once for true positive species reports and again for false positive species 

reports, as changing the Overlap and Sensitivity settings might differently affect the two. Data 

was aggregated the mean number of false positive or true positive species by visit across all 

visits. The BirdNET outputs from all site visits obtained using the AudioMoth were used for the 

three-way ANOVAs testing the effects of Overlap and Sensitivity. 

RESULTS 

ARU Comparison 

A total of 75 species were heard across all site visits during the point counts (Table A.1). 

Although no species was detected during all 36 points counts, the Common Yellowthroat 

(Geothlypis trichas, n = 35) was detected during more point counts than any other species (Table 
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A.1). A few species were detected by the observer during the point counts but were not present 

on any of the BirdNET outputs, including the American Robin (Turdus migratorius, n = 3), 

Barred Owl (Strix varia, n = 1), Chimney Swift (Chaetura pelagica, n = 1), and Wild Turkey 

(Meleagris gallopavo, n = 1). On the contrary, a few species were detected on all ARU outputs 

each time they were detected during points counts, including the American Kestrel (Falco 

sparverius, n = 1), Hooded Warbler (Setophaga citrina, n = 3), Northern Bobwhite (Colinus 

virginianus, n = 3), and Prothonotary Warbler (Protonotaria citrea, n = 1). Additionally, several 

species were detected as many times as the point counts by at least one ARU, including the 

American Redstart (Setophaga ruticilla, n = 2), Baltimore Oriole (Icterus galbula, n = 2), 

Chipping Sparrow (Spizella passerina, n = 2), Green Heron (Butorides virescens, n = 4), Hairy 

Woodpecker (Leuconotopicus villosus, n = 2), Kentucky Warbler (Geothlypis formosa, n = 15), 

Orchard Oriole (Icterus spurius, n = 14), Ovenbird (Seiurus aurocapilla, n = 4), Pileated 

Woodpecker (Dryocopus pileatus, n = 1), Prairie Warbler (Setophaga discolor, n = 7), Purple 

Martin (Progne subis, n = 7), Red-headed Woodpecker (Melanerpes erythrocephalus, n = 4), 

Scarlet Tanager (Piranga olivacea, n = 2), Warbling Vireo (Vireo gilvus, n=9), Yellow-throated 

Vireo (Vireo flavifrons, n=5), and Yellow-throated Warbler (Setophaga dominica, n=6). For 59 

out of the 75 total species, AudioMoth performed better than or equal to all other ARUs based 

solely on the number of detections per species for the 36 site visits, using the point count data as 

truth (Table A.1). Further details regarding the exact species which were heard during points 

counts, how many visits each species was detected via point counts and for each ARU tested, can 

be found in Table A.1.   

 I conducted a comparison between the number of true positive, false positive, and false 

negative species reported on the unfiltered BirdNET output for each unit for each visit, which 
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revealed the AudioMoth to have the best performance in terms of the highest number of true 

positive species reported and the lowest number of false negative species errors, but AudioMoth 

also had the highest number of false positive species reports (Figure 1.1). As for the detection 

type means—averaged across all site visits—AudioMoth had the greatest mean number of true 

positives (14.92 species) and the least mean number of false negatives (8.56), though it also had 

the greatest number of false positives (11.97; Figure 1.1; Table A.2). The SwiftOne consistently 

ranked second across all detection types while the Wildlife Acoustic devices had the poorest 

performance across all detection types (Figure 1.1; Table A.2).   

The mixed effects nested ANOVA indicated that ARU model choice had a highly 

significant effect on sensitivity, specificity, F1 harmonic mean, and MCC (P<0.001; Table 1). 

The only performance metric for which ARU choice did not have a significant effect was 

precision (P-value = 0.97; Table 1). I conducted a comparison between the precision, sensitivity, 

specificity, F1 harmonic mean, and MCC values for each of the ARUs, examining each 

performance metric calculated for each visit per ARU (Figure 1.2), as well as examining the 

means for each ARU—averaged across all site visits (Table A.2). For the performance metric 

means—which were calculated for each ARU using data for each site visit—the AudioMoth 

achieved the highest mean sensitivity (0.64), F1 harmonic mean (0.59), and MCC (0.49; Table 

A.2). The SM4, SwiftOne, and SMMicro were tied for the highest precision (0.57; Table A.2). 

The SM4 also had the highest specificity (0.92; Table A.2). 

Overlap and Sensitivity in BirdNET 

Examining the effects of Overlap and Sensitivity on false and true positive species 

reported per visit, both a three-way randomized block ANOVA for true positives and a separate 

ANOVA for false positives indicated highly significant effects of Overlap and Sensitivity on the 
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mean number of true positives and false positives, respectively (P<0.001; Table 2). Additionally, 

the results from both ANOVAs indicated a significant interactive effect between Overlap and 

Sensitivity (P<0.01; Table 2). Furthermore, the results from the Overlap and Sensitivity tests 

indicated that increasing the Overlap or Sensitivity settings causes an increase in the total 

number of reports and the total number of species reported, resulting in an increase in both false 

positive and true positive species (Figure 1.3).  

Although both Overlap and Sensitivity both have highly significant effects on the number 

of both false positive and true positive reports based on the results of the three-way ANOVA 

(Table 2), Sensitivity had the greatest impact on the number of species reported (Figure 1.3; 

Table A.3). Increasing BirdNET’s Sensitivity caused the number of false negatives and true 

negatives to decrease, while causing both the number of false positives and true positives to 

increase (Figure 1.3; Table A.3). The effects of adjusting the Sensitivity setting were especially 

prominent from 1.0 (the default setting) to 1.5 (the maximum sensitivity possible; Figure 1.3). 

Adjustments to the Overlap setting had a lesser effect on species output than Sensitivity, but 

increases in the Overlap setting (from its default value of 0.0) had a stronger effect at the 

maximum Sensitivity value (Figure 1.3). Like with Sensitivity, increasing the Overlap setting led 

to a decrease in the number of false negatives and true negatives, while leading to an increase in 

the number of false positives and true positives (Figure 1.3).  

Both the highest mean number of true positive species reported (20.47 species) and the 

highest mean number of false positive species reported (38.08 species) were obtained at Overlap, 

Sensitivity setting combination (2.5, 1.5; Table A.4). The lowest mean number of false negative 

species errors (0.67) was achieved at the setting combination (2.5, 1.5), whereas the highest 

mean number of false negative species errors (11.53) was obtained at the setting combination 
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(0.5, 0.5; Table A.4). The lowest mean number of true positive species reported per visit (9.61) 

was obtained at the setting combination (0.5, 0.5), while the lowest mean number of false 

positive species reported (3.22) was achieved at the setting combination (0, 0.5; Table A.4). 

The results comparing the mean values of precision, sensitivity, specificity, F1, and MCC 

between the 18 Overlap, Sensitivity setting combinations tested showed the highest mean 

precision (0.76), the highest mean specificity (0.93), and the highest mean MCC (0.46) were 

achieved at Overlap, Sensitivity setting pair (0, 0.5; Table A.3); however, the highest mean MCC 

(0.46) was also achieved at another Overlap, Sensitivity setting combination (1.5, 0.5; Table 

A.3). The highest sensitivity (0.97) was obtained using the setting combination (2.5, 1.5; Table 

A.3). The highest mean F1 score (0.60) was reached at the setting combination (2, 1; Table A.3). 

The lowest mean precision (0.35), specificity (0.22), F1 harmonic mean (0.51), and MCC (0.23) 

were obtained at Overlap, Sensitivity combination (2.5, 1.5; Table A.3). The lowest mean 

sensitivity (0.46) was achieved at setting combinations (0, 0.5) and (0.5, 0.5; Table A.3).  

DISCUSSION 

ARU Model Comparison Analysis 

Despite PAM becoming increasingly used in avian monitoring, and the reliance of PAM 

efforts on ARUs for obtaining audio data, little research has been conducted to discern the impact 

that ARU device choice has on BirdNET species output (Sugai et al., 2019; Toenies & Rich, 

2021). AudioMoths outperformed other units tested in the number of false negative and true 

positive species reported, but AudioMoths generally reported higher overall species richness, 

resulting in the units additionally having the highest number of false positives. On behalf of 

unfiltered BirdNET outputs having an unacceptable level of false positive reports, which was 

highly evident in this study as well as previous studies which found that BirdNET has an average 
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unfiltered precision between 72—85%, it is thus imperative to implement some method of 

filtering to mitigate the false positives in BirdNET outputs, such as by using a confidence-based 

threshold or by manually validating BirdNET reports (Pérez-Granados, 2023; Kahl et al., 2021; 

Wood et al., 2022). Additionally, of the four performance metrics for which ARU choice differed 

(sensitivity, specificity, F1, and MCC), AudioMoth performed the best for three of the four 

metrics—failing to outperform other units only for specificity. However, given the importance of 

implementing a filtering method when using automatic species classifier data, the lower mean 

specificity, as well as the higher number of false positive species reported by the AudioMoth, 

could be remedied by implementing a filtering method, such as confidence-score filtering (e.g., 

Cole et al., 2022; Bota et al., 2023; Wood et al., 2023).  

The SwiftOne ranked second best in the average number of true positive and false 

negative species reports, but it had the second highest number of false positive species reported; 

the same pattern then holds true for the SM4 and SM-Micro. This pattern of scoring well in true 

positive and false positive but also doing poorly with false positives intuitively makes sense: as 

more species are reported, there is a greater chance that both the number of true positive species 

and false positive will increase, and as the number of true positive species increases, the number 

of true negatives decrease. However, an increased number of total species reported among units 

using the same audio processing methods (BirdNET using the same settings) might suggest that 

more distant vocalizations were recorded in general—or perhaps were recorded more clearly, as 

an increase in either the quantity or quality of the vocalizations captured could lead to more 

overall BirdNET reports overall. In other words, although the number of both true positive and 

false positive species reported per visit were higher for the AudioMoth, this might be due to it 
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capturing an increased quantity or quality of bird vocalizations compared to the other units, 

which would thereby result in more overall detections to be made by BirdNET.  

This study further emphasizes the importance of filtering BirdNET reports (or other 

automatic species classifiers), as each unit reported a greater number of false positive species 

than it did true positive species, granted, many of the false positive species had few reports per 

recording whereas the true positive species typically had multiple reports per recording. Given 

this, some filtering method should be used to mitigate the number of false positive species 

reports being accepted into any data set to be used for population monitoring to safeguard against 

considering species which are truly absent to be present. Ways to mitigate the number of false 

positives include changing the minimum confidence threshold setting in BirdNET (Kahl et al., 

2021; Pérez-Granados, 2023), calculating species-specific thresholds using results from a subset 

of validated species reports for each species (e.g., Cole et al., 2022; Wood et al., 2023; Bota et 

al., 2023), or perhaps by requiring a minimum number of vocalizations per species per recording. 

Despite some form of false positive mitigation being necessary, it is also important to note that 

such measures will also increase the number of false negatives (e.g., Cole et al., 2022). 

Nevertheless, false negatives can be dealt with, to some degree, using well-established 

occupancy modeling methods (MacKenzie et al., 2017).  

Overlap and Sensitivity Analysis 

Automatic species classifiers, such as BirdNET, are essential to large-scale PAM efforts 

on account of the large quantity of audio data that can feasibly be collected using PAM 

techniques (Cole et al., 2022; Lauha et al., 2021; LeBien et al., 2020; Ruff et al., 2020). Despite 

this, the consequences of adjusting BirdNET’s Overlap and Sensitivity settings on the 

performance have, as of writing this, yet to be investigated (Pérez-Granados, 2023). My analyses 
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indicated that Overlap and Sensitivity have highly significant effects on both the number of true 

positive species reported and the number of false positive species reported, and a significant 

interactive effect was documented between Overlap and Sensitivity. Additionally, Sensitivity had 

a greater impact on the number of true positive, false positive, and false negative species 

reported than did Overlap. 

As Sensitivity increased from its default value (1) to its maximum value (1.5) and 

Overlap increased from its default value (0) to the maximum value I tested (2.5), the average 

number of false negative species decreased to an average of almost 0 for the unfiltered BirdNET 

output. Although this seems promising given that one could potentially curtail the increased 

number of false positives by simply using a threshold or thresholds to filter the output, it is quite 

possible that the use of confidence-based thresholds might remove any net gain in true positives, 

as the detections which were not made prior to increasing the Overlap and Sensitivity values 

might not have confidence scores high enough to be considered true positives using such a 

filtering method. At any rate, it is quite possible that adjusting either or both the Overlap and 

Sensitivity settings might result in a different confidence score to be assigned to the same 

detection, which means the species-specific threshold would therefore need to be calculated for 

whichever Overlap-Sensitivity setting combination a person decides to use.  

Limitations 

This study took place during the later portion of the breeding season, and as some species 

may discontinue singing earlier in the breeding season than others, it is possible that the acoustic 

density during dawn chorus may not have been as dense as it otherwise would have had I 

sampled earlier in the breeding season. Collectively, my results may be a reflection of the 

community diversity and bird behavior occurring during this study. Additionally, the lack of 
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some species vocalizing means that it is possible that a lower species composition (and thus a 

lower diversity in avian vocalizations) was tested. It is also possible that the vocalization of 

juvenile birds during my sampling period may have slightly biased the results for BirdNET’s 

species output given that juvenile birds often do not have the same vocalizations as adults. For 

example, juvenile American Crows (Corvus brachyrhynchos), were often mistaken for Fish 

Crows (Corvus ossifragus) by BirdNET, which has an impact on the classification metrics; 

BirdNET uses embedded features to capture age and sex variation in vocalizations, but it is still 

an area of development (Kahl et al., 2021). Despite the elevated possibility of miscategorizations 

on account of the presence of juvenile birds, the amount of bias that this introduces should 

overall be minimal—especially given that BirdNET was trained using species recordings on 

Xeno-canto and Macaulay Library—both of which include juvenile vocalizations (Kahl et al., 

2021; Xeno-Canto, 2023; Cornell Lab of Ornithology, 2023b). 

 It is also important to note that this study was only able to compare the number of species 

known to have truly been present during each of the recording periods versus the number that 

were absent, meaning that I do not know the actual number of true positive or false positive 

reports for each BirdNET output. Furthermore, it is possible, albeit unlikely, that some of the 

species labeled as true positive species on each of the BirdNET outputs for a given visit (species 

truly present during the time of recording) could have actually been the call of a different species 

during an individual recording, meaning that there may have only been false positive reports of a 

species for a given BirdNET species output despite the species truly being heard during the 

concurrent point count. I state this as being unlikely, or at the very least likely seldom occurred 

and therefore minimally impactful, on behalf of the fact that most species that were truly present 

during a given point count vocalized more than once during the recording period, and due to the 
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fact that most species that were present during a point count and therefore labeled as a “true 

positive” species report if present on a BirdNET output for that particular site visit were often 

reported more than once on the species output—making it likely that at least one of those reports 

was a true positive.  

CONCLUSION 

The best performing unit was the AudioMoth, followed by the SwiftOne, SM4, and 

finally the SMMicro. Despite this, and though several of the performance metrics were 

statistically different, the difference in performance between the 4 different units was not 

significant enough to warrant a caution against the use of any specific unit; however, I do hope 

that this information can be used by researchers to assist in deciding between which ARU model 

they should use for their avian population monitoring work. There is a significant cost difference 

between the 4 different ARUs tested, with the AudioMoth costing $79.99 per unit, the SwiftOne 

costing $349.00 per unit, the SM4 costing $899.00 per unit, and the SMMicro costing $249.00 

per unit (as of August 2023). Acknowledging these stark differences in cost, it seems that for 

most researchers, opting for the cheap yet reliable AudioMoth may be the best bet; however, 

other considerations—such as durability of a given ARU model or maximum possible recording 

time for a single deployment—factors which I did not examine, may also be important to 

consider when deciding which ARU model to use for a given project. Nonetheless, my findings 

suggest that, regardless of which ARU model is purchased, the biggest challenge researchers will 

face is the false positive rate generated by the automatic classifier itself rather than the quality of 

the audio captured by the ARU.  

 Based on my findings of the Overlap and Sensitivity settings, whether it is worthwhile to 

run BirdNET with Overlap/Sensitivity settings deviating from the defaults depends on the goals 
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of the researcher. If the goal is to examine whether a specific species is occupying a given area, 

and the researcher is particularly concerned with limiting false negative errors, then running 

BirdNET higher Sensitivity and Overlap setting values might be worthwhile, assuming that the 

researcher is able to invest additional time towards manual validation to contend with the 

increase in false positives (and overall decrease in precision) that comes with using higher 

Sensitivity and Overlap settings. However, if the goal is to examine species richness of a 

multitude of sites—or if there is limited funding to hire technicians for extensive manual 

validation efforts—then increasing these settings from their default values might be a poor 

decision given that, without further manual validation, making such an adjustment to the settings 

will increase the number of false positives and thus artificially bloat the “species richness.” For 

most users who likely do not have the time or resources to invest in extensive manual validation 

efforts—especially for those who are aspire to establish a long-term population monitoring 

program and seek to maximize the amount of sites surveyed each year, then using the default 

Overlap and Sensitivity settings along with some streamlined filtering method seems to be the 

best choice, as doing so was able to achieve a precision value of 0.95 and a specificity of 0.99.  

Given that this is the only paper thus far comparing the performance between these 4 

ARU models, as well as the only study investigating the effects of different Overlap and 

Sensitivity setting combinations on BirdNET species output, it is critical that additional 

investigations be carried out to support my findings. I hope to see further research conducted to 

discern whether my ARU model comparison results hold up in different contexts. For example, 

future research regarding the comparison of different ARU models might examine whether 

certain ARU models pick up specific species better than others on behalf of vocalization 

differences, making it worthwhile to recreate this study using a different avian community 
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composition; or examine the effects of anthropogenic noise on ARU model performance. 

Similarly, I hope to see further investigations conducted to determine whether my findings 

regarding the Overlap and Sensitivity settings hold true under various conditions. For example, 

future research regarding the effects of Overlap and Sensitivity could focus on discerning 

whether varying amounts of anthropogenic noise affects the impact had by different Overlap and 

Sensitivity setting combinations; or examine the effects of different Sensitivity settings on 

BirdNET output in a controlled environment in which the distance of the vocalization from the 

ARU is known; or examine the impacts of different Overlap settings in different environments—

especially in locations which have exceedingly high species richness such as the neotropics.  

Since my research focused only on whether a species was present or absent—marking 

species as “true positives” if they were present during the associated point count and marking 

them as “false positives” if they were not heard during the associated point count—I believe 

future studies should also investigate whether my findings for both the ARU model comparison 

and Overlap/Sensitivity work differs much from the number of true positive and false positive 

observations made by BirdNET. Granted, doing so would be a time-demanding task, as it would 

require a person to annotate either every second of an audio file or entire clips from audio files 

(assuming one would also like to examine false negative reports), making this an unfeasible task 

for most research teams. Despite this, having such data would allow for us to better understand 

the effects that ARU model choice might have on average confidence scores for true and false 

positive species reports, as well as the effects that adjusting the Overlap and Sensitivity settings 

have on average confidence scores for true and false positive reports. This would especially be 

helpful in discerning whether my findings pertaining to the ability of using a filtering method 

alongside higher Overlap and Sensitivity values is helpful in not only increasing the number of 
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true positive species reported while minimizing the number of false positives, but also if it is as 

effective at minimizing individual false positive reports while maximizing true positive reports.  

TABLES AND FIGURES 

Tables 

Table 1.1: Single factor (Unit) mixed model nested ANOVA between all ARUs for a.) sensitivity, 

b.) precision, c.) specificity, d.) F1 harmonic mean, and e.) Matthews correlation coefficient. 

Date (of visit) is nested within site (of visit). Type III ANOVA with Satterthwaite’s method was 

used. 

Single Factor, Mixed Model Nested ANOVA 

a. Precision 

 Df Sum Sq Mean Sq F value Pr(>F) 

Unit 6 6.2e-3 1.03e-3 0.22 0.97 

      
b. Sensitivity 

 Df Sum Sq Mean Sq F value Pr(>F) 

Unit 6 1.59 0.27 36.29 2.2e⁻16 

      
c. Specificity 

 Df Sum Sq Mean Sq F value Pr(>F) 

Unit 6 0.07 0.01 17.11 4.55e-16 

      
d. F1 Harmonic Mean 

 Df Sum Sq Mean Sq F value Pr(>F) 

Unit 6 0.37 0.06 15.98 4.09e-15 

      
e. Matthews Correlation Coefficient 

 Df Sum Sq Mean Sq F value Pr(>F) 

Unit 6 0.35 0.06 10.76 1.99e⁻10 

 

Table 1.2: Three-way, randomized block design ANOVA test results testing the effect of the 

Sensitivity and Overlap settings on a.), the number of false positive species reported per site visit 

across all 36 site visits and b.), the number of true positive species reported per site visit across 

all 36 site visits. 

       

Three-Way, Randomized Block Design ANOVA  

a. False Positives  

 Df Sum Sq Mean Sq F value 
 

Pr(>F) 

Sensitivity setting 2 310524 155262 6285.476 < 2e⁻16 
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Overlap setting 3 6735 1347 54.528 < 2e⁻16 

Visit 35 19137 547 22.135 < 2e⁻16 

Sensitivity setting—
Overlap setting 10 644 64 2.605 

 
0.00421 

Residuals 595 14698 25   

 
b. True Positives 

 

 Df Sum Sq Mean Sq F value 
 

Pr(>F) 

Sensitivity setting 2 13294 6647 2096.565 < 2e⁻16 

Overlap setting 3 394 79 24.881 < 2e⁻16 

Visit 35 8068 231 72.710 < 2e⁻16 

Sensitivity setting—

Overlap setting 10 87 9 2.731 

 

0.00272 

Residuals 595 1886 3   
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Figures 

 
Figure 1.1: False negative (FN), false positive (FP), and true positive (TP) averages among 

AudioMoth (leftmost; red), SM4 (second to leftmost; orange), SMMicro (third to leftmost; light 

blue), and SwiftOne (rightmost; dark blue). Data represents average number per detection type 

per visit for 36 visits conducted from June 21—July 4, 2023 in Jackson County, Illinois, USA. 

Detections were produced using audio from each of the four ARUs and using BirdNET-Analyzer 

at default settings. 
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Figure 1.2: Precision, Sensitivity, Specificity, F1 harmonic mean, and MCC (Matthews 

Correlation Coefficient) averages among AudioMoth (leftmost; red), SM4 (second to leftmost; 

orange), SMMicro (third to leftmost; light blue), and SwiftOne (rightmost; dark blue). Data 

represents average value per performance metric per visit for 36 visits conducted from June 21—

July 4, 2023 in Jackson County, Illinois, USA. Detections were produced using audio from each 

of the four ARUs and using BirdNET-Analyzer at default settings. 
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Figure 1.3: Confusion matrix heatmaps showing the effects of different Sensitivity and Overlap 

setting combinations on the mean number of true positive species reported (TP), false positive 

species reported (FP), true negative species reported (TN), and false negative species reported 

(FN). Darker colors indicate greater values. Values depicted were averaged across all 36 site 

visits. Only audio collected via AudioMoth was used for this analysis, and audio from each of the 

36 visits were processed with all 18 combinations of Overlap and Sensitivity tested. Audio was 

collected during 36 visits between June 21—July 4, 2023 in Jackson County, Illinois, USA. 
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Figure 1.4: Confusion matrix heatmaps showing the effects of different Sensitivity and Overlap 

setting combinations on the mean number of true positive species reported (TP), false positive 

species reported (FP), true negative species reported (TN), and false negative species reported 

(FN) for the Pre-threshold dataset. To accurately compare the effects of implementing a species-

specific threshold, the pre-threshold dataset only included species which had species-specific 

validations and were present during the point counts were included in the making of these heat 

maps. The data shown was not filtered using species-specific thresholds. Darker colors indicate 

greater values. Values depicted are means across all 36 site visits.  
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CHAPTER 2 

COMPARING METHODS OF STREAMLINING BIRDNET-ANALYZER VALIDATION FOR 

LONG-TERM AVIAN POPULATION MONITORING 

INTRODUCTION 

 Since 1970, there has been an estimated net-loss of approximately 3 billion birds in North 

America—a loss equal to 29% of 1970 abundance estimates (Rosenberg et al., 2019). Successful 

avian conservation is hinged on effective monitoring of population dynamics and trends over 

time. Effective monitoring enables researchers to prioritize their efforts towards the species and 

ecosystems most imperiled, identify population trends, and better gauge the effectiveness of 

various conservation practices (Nichols & Williams, 2006; Marsh & Trenham, 2008; Jones, 

2011; Jones et al., 2013; Stowell et al., 2018). Point counts have historically been the 

conventional field method for estimating avian population abundance and distribution, assessing 

species-environmental relationships, and understanding drivers of population change (Bibby et 

al., 2000). However, with the advent of autonomous recording units (ARUs) and rapidly 

developing automatic species classifiers, such as BirdNET Analyzer (herein, BirdNET), many 

researchers have switched to using Passive Acoustic Monitoring (PAM) as an alternative 

approach to traditional point count methods (Kahl et al., 2021; Shonfield et al., 2017). Recent 

research comparing traditional avian monitoring techniques with PAM has documented that 

PAM can be more cost-effective, allow for greater observation windows than feasible with point 

counts, and reduce observer bias, among other advantages (Alquezar & Machado, 2015; 

Klingbeil & Willig, 2015; Hobson et al. 2002; Tegeler, Morrison & Szewczak, 2012; Shonfield 

& Bayne, 2017). Despite these benefits, the quantity of audio data that can conceivably be 
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collected versus the quantity that can feasibly be manually validated by humans differs 

substantially. 

Automatic species classifiers, which produce confidence-based species predictions based 

on audio data, offer a promising path forward to alleviate the data processing bottleneck of 

acoustic recordings, as terabytes of data can be easily collected during a sampling period. Even 

the most reliable automatic bird species classifier currently available for general use, BirdNET, 

has an average precision of 72—85% (percent of detections correctly classified), thus 

highlighting the continued issue of false positive and false negative errors with current species 

recognition software (Pérez-Granados, 2023; Kahl et al., 2021; Wood et al., 2021). This problem 

is further exacerbated by the fact that precision varies widely depending on the species being 

examined (Sethi et al., 2023). Although BirdNET is arguably the best available classifier for 

birds given it is free, capable of identifying more species than any other classifier, and exceeds 

other classifiers in terms of mean average precision, it too is prone to producing both false 

positive and false negative species reports (Lauha et al., 2021; LeBien et al., 2020; Ruff et al., 

2020; Kahl et al., 2021; Sethi et al., 2023). As such, one of the most pressing issues regarding 

PAM is how to process massive quantities of audio data, especially in a way that minimizes false 

positive and false negative errors (Pérez-Granados, 2023; Lauha et al., 2021).  

Many researchers have attempted to minimize the number of false positive reports 

generated by BirdNET by filtering BirdNET output using confidence-based thresholds. When 

using confidence-based thresholds, the user either chooses an arbitrary threshold value for all 

species (e.g. Kahl et al., 2021; Wood et al., 2021) or calculates species-specific thresholds using 

data gathered via manual validation of BirdNET reports (e.g. Cole et al., 2022; Bota et al., 2023). 

The confidence-based thresholds filter BirdNET outputs such that all detections with a 
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confidence value that is less than the selected threshold value are removed from the dataset. 

Fixed albeit arbitrary thresholds that have been applied to BirdNET in previous studies include 

0.5 (e.g., Wood et al., 2021), but these thresholds are usually accompanied with little justification 

or exploration of the implications. Alternatively, recent approaches have validated a subset of the 

PAM recordings and then used species-specific calculated or modeled thresholds, avoiding a 

one-size-fits-all approach, ideally minimizing the number of discarded valid detections (Cole et 

al., 2022; Wood et al., 2023). Although filtering BirdNET output using confidence-based 

thresholds has become common in PAM efforts in the last few years (e.g. Kahl et al., 2021; 

Wood et al., 2021; Cole et al., 2022; Bota et al., 2023; Perez-Granados, 2023), few have 

compared the performance of different confidence-based threshold filtering methods.  

Here, I compare four confidence-based thresholds for filtering BirdNET output: fixed 0.5 

and/or 0.75 thresholds for all species (e.g., Kahl et al, 2021 and Wood et al., 2021) and two 

species-specific thresholds which are calculated through manual validation of BirdNET output 

(e.g., Cole et al., 2022, Bota et al., 2023, and Wood et al., 2023). Coupled with concurrent point 

counts during ARU recording periods, I then evaluated which filtering method best achieves a 

mean precision value of at least 0.95 while still maximizing sensitivity, thus excluding most false 

positive species errors while also minimizing the number of false negative errors created by the 

filtering process. Following this, I applied the best performing threshold approach based on my 

requirements to filter a PAM dataset collected during April – June 2022 covering the southern 11 

counties of Illinois, USA, aimed at resurveying the 1986-1991 Illinois Breeding Bird Atlas to 

assess changes in species composition, occurrence, and richness of the warbler and vireo 

community. By resampling primary blocks sampled by the Illinois Breeding Bird Atlas, which 

occurred during 1986—1991, I can gain insight to changes in bird species distribution in the 
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Southern Illinois region—a region which has not been probabilistically sampled at this scale 

since the Illinois Breeding Bird Atlas (IBBA) concluded over three decades ago (Kleen et al., 

2004).  

METHODS 

Assessing the performance of various BirdNET filtering approaches requires us to know 

“truth” regarding either the validity of individual detections or the validity of individual species 

present per recording. I established “truth” by conducting point counts alongside ARU 

recordings, allowing us to identify species present at each site. Using point count data as a 

reference, I calculated multiple performance metrics (e.g., precision, sensitivity) for BirdNET 

classification. Then, to establish species-specific filtering thresholds, I manually validated a 

subset of BirdNET detections. These validations, sourced from a large-scale PAM survey effort 

in 2022, provided the necessary information for filtering threshold calculations that were then 

applied to study changes in the regional warbler and vireo community over a 30-year period.  

2023 Point Counts and ARUs 

From June 21 to July 4, 2023, six field sites in Jackson County, IL, USA with differing 

land use histories, physical attributes, plant communities, and avian community compositions 

were sampled using AudioMoths and simultaneous point counts. ARUs were placed in small, 

grip-sealed plastic bags along with a desiccant silica packet to ensure the units remained dry and 

were fastened to a 1.5-meter t-post with a fixed location at each site. This method of 

waterproofing AudioMoths was chosen as it appears to be the most cost-efficient method without 

losing a significant amount of sound (Lapp et al., 2023). All six sites were visited 6 times each 

for a total of 36 site visits. Each recording period (site visit) took place between the hours of 

0500 and 0830, with all recordings beginning on the hour (ex: 5:00:00 AM) and recording for a 
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total of 30 minutes while a point count was simultaneously conducted for the duration of the 

ARU recording period. Site visitation order was randomized during each field day such that all 

sites would be sampled during each of the possible start times.  

 BirdNET Analyzer was then used, with default Overlap and Sensitivity settings, the 

default confidence value minimum of 0.1, and a custom species list, to process all audio files 

from the 2023 PAM recordings. The custom species list used to process the 2023 point count and 

ARUs dataset was generated using the R package “rebird,” and the list consisted solely of 

species reported on eBird during the past 10 years from June 21 to July 4 (the date range of the 

sampling period) in Jackson County, IL (in which all sites were located) (Maia et al., 2023).  

Point counts were conducted during the entire duration of each 30-minute recording 

period for all 36 site visits for the 2023 point counts and ARUs dataset. For each point count, the 

observer stood approximately 5 meters away from the ARU and recorded all bird species which 

were heard. All bird species were marked only once but were not time-stamped. Although bird 

species which were seen but not heard during point counts were noted, they were not 

incorporated into the analysis due to my focus on vocalizing species.  

2022 Breeding Bird Surveys 

From May 1 to July 1, 2022, I surveyed 45 blocks—or 135 sites—across the 

southernmost 11 Illinois counties using AudioMoth ARUs (version 1.2.0, Hill et al., 2018, 2019) 

and BirdNET Analyzer. ARUs were placed in small, grip-sealed plastic bags along with a 

desiccant silica packet to ensure the units remained dry and were fastened to a 1.5-meter t-post 

with a fixed location at each site, as this method of waterproofing AudioMoths appears to be the 

most cost-efficient method without losing a significant amount of sound (Lapp et al., 2023).  I 

further divided the primary census blocks (approximately 25.9 square kilometers) into nine, 
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uniform sub-blocks (approximately 2.88 square kilometers) and randomly selected three to 

account for avian species composition variation within the census blocks (Kleen et al., 2004; 

Montgomery et al., 1987). Each of the 135 sites sampled represents a different sub-block. Given 

that many of the census blocks consist of exclusively private land, in some situations the initially 

selected sub-blocks had to be revised due to lack of access to private land. Due to these 

limitations, only 45 primary blocks were fully sampled (3 surveyed sub-blocks per block), and to 

remain consistent with my sampling efforts, for the purpose of this research, I analyzed the 45 

primary blocks for which I was able to sample 3 sub-blocks.  

During the 2022 breeding bird surveys, AudioMoths were used for recording bird 

vocalizations, as they are currently the lowest-cost ARU and have shown a comparable 

performance to higher-cost units (Toenies & Rich, 2021). ARUs were programmed to record for 

four hours beginning 30 minutes before local sunrise to capture the dawn chorus and peak hours 

of diurnal bird vocalization. For deployment, ARUs were placed in small, grip-sealed plastic 

bags along with a desiccant silica packet to ensure the units remained dry and were then secured 

to a tree at breast height (approximately 1.5 meters above ground) using a zip tie. The ARUs 

remained in the field to record for a minimum of five days—producing a minimum total of 5 4-

hour recordings per site, thus resulting in a minimum of 20 observation hours per sub-block and 

a minimum of 60 observation hours per primary block. In some instances, ARUs were left out for 

more than 5 days due to ARU retrieval becoming infeasible due to inclement weather making 

dirt roads impassable or due to the need to prioritize deploying additional units rather than 

retrieving units. 

To process ~3500 hours of audio data collected during the 2022 breeding bird surveys, 

the use of an automatic species classifier was necessary. As such, BirdNET Analyzer was 
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selected to process the collected audio files using default settings and a custom species list. The 

R package ‘rebird’ was used to create a custom species list containing all species reported to 

eBird from 2021-2022 in Illinois (Maia et al., 2023). I ran BirdNET using default Overlap and 

Sensitivity settings, the default minimum confidence as 0.1, and with the use of the custom 

species list to process all audio files, resulting in a minimum of 5 daily BirdNET outputs per sub-

block. Each BirdNET output corresponds with a single “visit” (4-hour recording for an 

individual site on a given day), with each row containing information regarding the species 

predicted by BirdNET, the recording time of the detection, and a confidence value, which is a 

rating of how confident the BirdNET algorithm is that the individual detection is a true positive, 

among other information.  

Manual Validation & Threshold Calculations 

Following audio analysis with BirdNET, 100 random BirdNET detections per species 

were selected using all outputs from the 2022 breeding bird surveys. The only species for which I 

validated 100 random samples were species present during the point counts (75 species) and all 

warbler and vireo species which breed in Southern Illinois (23 species), with many of the warbler 

and vireo species appearing in the point count dataset. All random samples were manually 

validated using audio playback, with each individual detection being marked as 1 (detected) or 0 

(not detected). In addition to calculating species-specific thresholds, the results from the 100 

manual validations allowed for species-specific calculations of: 1) a maximum confidence score 

for a false positive detection; 2) a maximum confidence score for a true positive detection; and 3) 

standard deviation and standard error of confidence scores.  

The first set of species-specific thresholds calculated, herein referred to as the FP-based 

thresholds, uses methods adapted from Cole et al. (2022). The FP-based thresholds are calculated 
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by summing the species-specific maximum confidence score of false positives, the standard error 

of the confidence scores for the species, and—if the sum of the first two values did not equal or 

exceed 0.95—then adding 0.05. Any species which either had a maximum confidence value 

amongst all false positives that was greater than the maximum confidence score amongst all true 

positives or which had a calculated FP-based threshold value exceeding 1.0 were excluded from 

further analyses.  

The second set of species-specific threshold type tested is herein referred to as the 

Modeled thresholds (Wood et al. 2023; Bota et al., 2023). By this method, the same 100 manual 

validations used for the FP-based threshold were also used for the derivation of this set of 

species-specific thresholds to ensure consistency. To calculate the Modeled thresholds, first the 

BirdNET’s confidence scores were back-transformed into their original logit scale using the 

following equation: 

Logit score = ln(1/(1 – confidence score)) 

 After back-transforming the confidence scores, a logistic regression was fitted to 

establish the relationship between the independent variable (BirdNET logit-scale prediction 

score) and dependent variable (the probability that the detection is a true posit ive). For each 

species, the equation considering a probability of correct detection (true positive) used was as 

follows: 

logit(P) = ln(intercept) + 0.95 ×ln(logit-score) 

 Then, the minimum confidence score at which a 0.95 probability of a detection being 

correct was reached determined the threshold for the focal species. As in the case of the FP-based 

thresholds, any species for which I was unable to calculate a Modeled threshold score were 
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excluded from further analyses. The 100 manual validations per species were used to derive the 

Modeled threshold values for each species. 

Finally, I also included two arbitrary thresholds: confidence scores of 0.5 and 0.75. When 

comparing the four thresholds, I only included species that I was able to calculate a threshold for 

across each approach.  These species were excluded from all analyses pertaining to the 

comparison of performance between the four thresholds, as well as comparisons between the 

four filtered outputs (which were created using the thresholds) and the unfiltered output.  

Performance Comparisons 

Following the threshold calculations, I compared the number of true positive species, 

false positive species, and false negative species in each of the four filtered outputs and 

unfiltered output. The number of true negative species was calculated for the unfiltered dataset 

and each filtered dataset by adding the number of true positive, false positive, and false negative 

species and subtracting the total from the number of species present on the custom species list. A 

confusion matrix heatmap was created to visually compare the average number of true positive, 

false positive, false negative, and true negative species per visit for each output version.  

Precision, sensitivity, specificity, F1 harmonic mean (herein F1), and Matthews Correlation 

Coefficient (herein, MCC) were calculated individually for all five versions of the output 

(including the unfiltered version), using the average number of true positive, false positive, false 

negative, and true negative species per visit for each output version, and the results were graphed 

using a boxplot. A single-factor, mixed-effects ANOVA in which date was nested within site to 

account for variation due to site and date, was conducted for precision, sensitivity, specificity, f1, 

and MCC separately to determine whether the observed differences between the various 

performance metrics between threshold types were significant.   
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Comparing Species Composition & Richness 

Using the best performing threshold set, I then filtered the BirdNET output from the 2022 

surveys to evaluate changes in species richness and composition in the warbler and vireo species 

guild over the 30-year period since the last IBBA survey. Both the number of total target species 

detected per block per survey year as well as the species composition per block per survey year 

were examined. To examine block-level changes in species composition and richness between 

the last IBBA (1986—1991) to 2022, I calculated the Jaccard’s Similarity Index for individual 

blocks using the equation: 

J(A, B) = 
|𝐴∩𝐵|

|𝐴∪𝐵|
 

wherein 𝐴 ∩ 𝐵 is equal to the number of species detected by both surveys (IBBA and the 2022 

survey) within the same block, while 𝐴 ∪ 𝐵 equals the number of unique species detected per 

block across both survey years (in other words, the sum of the number of species detected in both 

surveys minus the number of shared species between the two surveys) (Jaccard, 1901). To further 

examine block-level changes in species composition and richness, the Sørensen’s Similarity 

Index was calculated for each block using the equation:  

SSI = 2a/(2a + b + c) 

wherein a = the number of species shared by both the IBBA and 2022 surveys in a particular 

block, b = the number of species present in the IBBA survey but absent from the 2022 survey for 

a particular block, and c = the number of species present in the 2022 survey but absent from the 

IBBA survey for a particular block (Sørensen, 1948). Both the Jaccard’s Similarity Index and 

Sørensen’s Similarity Index were used as the two indices provide different means of assessing 

species composition change, with the key difference being that the Sørensen’s emphasizes the 

importance of shared species between surveys for individual blocks. Both indices represent ways 
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to examine changes in β-diversity over time, and both indices may be used in tandem for such 

applications (e.g., Dong et al., 2023). To further differentiate the two, the Sørensen’s Similarity 

Index places a greater emphasis on the number of shared species and on changes in species 

composition between survey years whereas the Jaccard’s Similarity Index places greater 

importance on the number of species detected and thereby changes in species richness. For both 

the Jaccard’s Similarity Index and the Sørensen’s Similarity Index, possible values range from 0 

(indicating no similarity, or that no species are shared between the two survey years for an 

individual block) to 1 (indicating complete similarity, or that all species present in the first 

survey year are present in the second and vice versa). I then calculated the percent species 

turnover using the equation: 

% Species Turnover = 100 × (b+c)/(d) 

Wherein b = the number of species present in the IBBA survey but absent from the 2022 survey 

for a particular block, c = the number of species present in the 2022 survey but absent from the 

IBBA survey for a particular block, and d = the total number of species found between both 

survey years for a particular block. In addition to these metrics, the change in species richness 

was also calculated for each block individually by subtracting the total number of species for a 

given block from the IBBA survey from the total number of species for the same block. 

 To provide further context for any observed changes in warbler and vireo species richness 

and composition, I compared my findings with data from the USGS North American Breeding 

Bird Survey (BBS) for the years 1991 and 2022 (Ziolkowski et al., 2022). The BBS also takes 

place during the breeding bird season, and theoretically should capture similar changes in the 

warbler and vireo guild. However, the BBS sampling design differs from mine. The BBS does 

not sample grid blocks in the same way as the IBBA and my survey efforts, and BBS routes are 
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scarce in southern Illinois. Therefore, I compared state-level changes in warbler and vireo counts 

between 1991 and 2022, rather than relying solely on data from the southern Illinois region. 

Since most of my target species are forest specialists primarily found in southern Illinois 

(Crocker, 2018), and several have their entire Illinois breeding range located within (e.g., Black-

and-white Warbler (Mniotilta varia), Northern Parula (Setophaga americana)), I compared state-

level BBS data. This approach captures detections likely originating from southern Illinois, 

particularly compared to generalist species like the Common Yellowthroat (Geothlypis trichas) 

and Red-eyed Vireo (Vireo olivaceus). For each of the 21 target warbler and vireo species, the 

total count per species for the years 1991 and 2022 were examined to discern whether a positive, 

negative, or neutral change in the number of detections per species took place during the time 

between the last IBBA and my survey efforts. To further understand the effects of observation 

hours on species richness variation, I plotted the relationship between observation hours per 

block (independent variable) and observed species richness (dependent variable)—separately 

assessing the point count and PAM data.  

RESULTS 

Threshold Comparison 

A total of 75 species were detected by the observer during the 36 point counts conducted 

during the concurrent 2023 PAM recordings. Of these 75 species—all of which had 100 random 

BirdNET detections sourced from the 2022 breeding bird surveys and manually validated—10 

species had to be excluded as I was unable to calculate a species-specific threshold. Specifically, 

I was unable to calculate species-specific thresholds for 6 species using the Modeled threshold 

approach, and I was unable to calculate species-specific thresholds for 5 species using the FP-

based threshold methodology; 1 species failed across both approaches. Using the 65 remaining 
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species, averaging all species-specific thresholds, I documented a mean Modeled threshold value 

of 0.40 ± 0.20 SD and a mean FP-based threshold value of 0.48 ± 0.17 SD.  

I was unable to derive thresholds for six species using the methodology used for deriving 

the Modeled thresholds, including the Barred Owl (Strix varia), Belted Kingfisher (Megaceryle 

alcyon), Eastern Towhee (Pipilo erythrophthalmus), Kentucky Warbler (Geothlypis formosa), 

and Green Heron (Butorides virescens) (Table B.1). I was unable to calculate species-specific 

thresholds using the FP-based threshold calculation methods for a total of five species, including 

the Summer Tanager (Piranga rubra), Eastern Towhee (P. erythrophthalmus), Eastern Wood-

Pewee (Contopus virens), Great Crested Flycatcher (Myiarchus crinitus), and Song Sparrow 

(Melospiza melodia) (Table B.1). I was unable to calculate the FP-based threshold or Modeled 

threshold for the Eastern Towhee (P. erythrophthalamus). In total, I was unable to calculate one 

or both of the species-specific thresholds for 10 species (Table B.1), and thus these 10 species 

were removed from further analyses.  

The single-factor (threshold type) mixed-effects nested ANOVA, in which “Date” was 

nested within “Site” to account for the variation due to site and date sampled, was conducted for 

the following metrics: a. true positive species (per visit), b. false posit ive species (per visit), c. 

false negative species (per visit), d. precision, e. sensitivity, f. specificity, g. F1 harmonic mean, 

and h. MCC (Matthews correlation coefficient) (Table 2.1). A unique ANOVA was fit to all 5 

versions of the output: unfiltered, an arbitrary 0.5 confidence threshold for all species, an 

arbitrary 0.75 confidence threshold for all species, the species-specific Modeled thresholds, and 

the species-specific FP-based thresholds. The results of the ANOVA showed that, for each metric 

listed above, the threshold approach was found to significantly affect the classification metrics (P 

< 0.001; Table 2.1). To further understand the differences between individual output versions (the 
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difference between unfiltered vs. different threshold filters, or the difference between different 

threshold types), I used a Tukey’s post-hoc HSD test to examine pairwise comparisons for each 

of the metrics.  

Tukey’s post-hoc HSD test documented all pairwise comparisons between the unfiltered 

data and any of the outputs filtered using confidence-based thresholds were highly significantly 

different (P < 0.001) except for a few of the MCC pairwise comparisons (Table 2.2). Notably, 

there were no significant differences in true positive, false positive, or specificity metrics 

between the filtered outputs themselves (0.5, 0.75, FP-based, Modeled thresholds), except when 

compared to the unfiltered data (all p < 0.001). Interestingly, several comparisons involving false 

negative rates and MCC showed no significant differences between the 0.5, FP-based, and 

Modeled thresholds (Table 2.2). 

The unfiltered data differed significantly from all filtering approaches in the number of 

true positive, false positive, and false negative species (Figure 2.1; Table 2.3). The unfiltered data 

had the highest number of true positive species reported per visit (11.31 ± 3.41 SD), followed by 

the output filtered using the Modeled thresholds (7.08 ± 2.2 SD; Figure 2.1; Table 2.3). The 

unfiltered data also had the greatest mean number of false positives (6.58 ± 2.96 SD), followed 

again by the Modeled threshold (0.69 ± 0.86 SD; Figure 2.1; Table 2.3). The 0.75-filtered data 

had the most false negative species (16.94 ± 4.24 SD) followed by the 0.5 threshold (14.86 ± 

4.09 SD; Table 3).  

Analysis of five performance metrics (precision, sensitivity, specificity, F1 harmonic 

mean, and Matthews Correlation Coefficient [MCC]) revealed key trends in BirdNET species 

identification with varying confidence thresholds. Threshold filtering significantly improved 

precision compared to unfiltered data. The 0.75 confidence threshold achieved the highest 
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precision (0.99 ± 0.08 SD), followed by the FP-based threshold (0.95 ± 0.08 SD) and the 0.5 

threshold (0.94 ± 0.09 SD; Table 3). Conversely, unfiltered data exhibited the highest sensitivity 

(0.55 ± 0.13 SD) but also the lowest precision (0.64 ± 0.10 SD; Table 3). Specificity, indicating 

the ability to correctly identify absent species, generally increased with threshold filtering. The 

0.75 threshold achieved the highest specificity (1.00 ± 0.00 SD), followed by the FP-based and 

0.5 thresholds (both 0.99 ± 0.01 SD; Table 3). The unfiltered data had the lowest specificity (0.85 

± 0.07 SD). F1 harmonic mean and MCC, which combine precision and sensitivity, showed a 

trade-off (Table 3). Unfiltered data had the highest F1 score (0.58 ± 0.09 SD) but a lower MCC 

(0.42 ± 0.11 SD). The Modeled threshold achieved a mid-range F1 score (0.50 ± 0.10 SD) and 

the highest MCC (0.47 ± 0.10 SD; Table 3).   

Changes in Species Composition and Richness 

For the 45 primary blocks sampled during both the IBBA and the 2022 data collection 

efforts, the average number of species detected per block was 9.71 ± 4.34 SD for the IBBA 

(1986—1991) data and 13.24 ± 2.01 SD for my 2022 data (Table 2.3).  The average number of 

warbler/vireo species detected per hour of observation for the IBBA was 0.45 ± 0.30 SD, while 

the average number of warbler/vireo species detected per hour of observation for the 2022 

dataset was 0.18 ± 0.033 SD. Across all blocks, there was an average 36.38% increase across all 

resampled blocks in warbler and species richness in the Southern Illinois region over the 30-year 

period (Table2. 3; Figure 3). The IBBA averaged 47.80 hours of observation per block while the 

2022 study averaged 76.71 hours of observation per block (Table 2.3). A positive relationship 

was found to exist between the number of observation hours per block and the observed species 

richness per block for both the point count data from the IBBA and for the PAM data from 2022 

(Figure 2.4).  
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We resampled a total of 45 primary blocks originally sampled by the IBBA. Of these 45 

blocks, 26 blocks were considered public blocks (meaning either 2 or 3 of the 3 sites sampled 

within a given block were located on publicly owned land), whereas 19 blocks were considered 

private blocks (either 2 or 3 of the 3 sites sampled within a given block were located on privately 

owned land). Because the IBBA examined primary blocks rather than subblocks, our data was 

aggregated at the block-level rather than the sub-block level. Among the private blocks, the mean 

change in warbler/vireo species richness per block was 5.42 ± 0.86 SD, whereas for public 

blocks, it was 2.15 ± 0.83 SD (Table B.5). The IBBA mean warbler/vireo species richness among 

the private blocks was 7.00 ± 0.80 SD and for public blocks was 11.69 ± 0.75 SD, whereas the 

2022 mean species richness among private blocks was 12.42 ± 0.44 SD and for the public blocks 

was 13.85 ± 0.37 SD (Table B.5). The average hours of survey effort for the private and public 

blocks during the IBBA were 29 ± 6.24 SD and 61.76 ± 24.27 SD, respectively, while the 

average hours of survey effort for the private and public blocks during the 2022 survey were 

74.95 ± 1.70 SD and 78.46 ± 2.60 SD, respectively (Table B.5).  

Of the 21 target warbler and vireo species, the species which were detected in the least 

number of blocks in the IBBA data was the Golden-winged Warbler (Vermivora chrysoptera), 

and for my 2022 dataset was both the Golden-winged Warbler (V. chrysoptera) and Yellow 

Warbler (Setophaga petechia) (Table 4). The target species detected in the most blocks in both 

the IBBA and 2022 data was the Common Yellowthroat (G. trichas), which was detected in all 

45 blocks in both datasets (Table 4). Species which experienced an increase in the number of 

blocks detected from the IBBA to my dataset, ordered from greatest increase to least amount of 

increase: American Redstart (Setophaga ruticilla), Worm-eating Warbler (H. vermivorum), 

Ovenbird (Seiurus aurocapilla), Yellow-throated Warbler (Setophaga dominica), Prothonotary 
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Warbler (Protonotaria citrea), Louisiana Waterthrush (Parkesia motacilla), Black-and-white 

Warbler (M. varia), Hooded Warbler (Setophaga citrina), Yellow-throated Vireo (Vireo 

flavifrons), Pine Warbler (S. pinus), Bell’s Vireo (Vireo bellii), Golden-winged Warbler (V. 

chrysoptera), Northern Parula (S. americana), and Red-eyed Vireo (V. olivaceus) (Table 4). The 

target species which saw a decrease in the number of blocks detected from the IBBA to my 

dataset, ordered from greatest amount of decrease to least amount of decrease: Yellow Warbler 

(S. petechia), Prairie Warbler (S. discolor), Blue-winged Warbler (Vermivora cyanoptera), 

Warbling Vireo (Vireo gilvus), and Kentucky Warbler (G. formosa) (Table 4).   

 The block-level Jaccard’s Similarity Index values ranged from 0.07 to 0.89, with an 

average of 0.49 ± 0.21 SD across all 45 blocks (Table 5). The block-level Sørensen’s Similarity 

Index values ranged from 0.14 to 0.94, with an average of 0.63 ± 0.20 SD (Table 5). The block-

level percent species turnover ranged from 11.11% to 92.31%, with an average of 50.82% ± 20.7 

SD (Table 5).  

 The Illinois state-wide North American Breeding Bird Survey count data for my target 

species showed an increase in counts for 16 of the 21 species between 1991 and 2022 (Table 6; 

Table B.2). A total of 3 of the 21 species decreased in count data between 1991 and 2022 for the 

Illinois Breeding Bird Survey (Table 6; Table B.2). Another 2 species experienced no change in 

the total number of counts between the 1991 and 2022 Breeding Bird Survey years (Table 6; 

Table B.2).  

DISCUSSION 

Threshold Comparison 

Despite the increasing popularity in both PAM, BirdNET, and confidence-based threshold 

filtering over the last few years (e.g., Wood et al., 2021; Cole et al., 2022; Wood et al., 2023; 
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Bota et al., 2023), a lack of attention has been paid towards comparing the performance of 

various species-specific confidence thresholds, or even in comparing species-specific confidence 

thresholds with arbitrary confidence thresholds. Given the potential that such methods have to 

equip land managers and landowners with the tools needed to conduct long-term avian 

monitoring, I deemed it necessary to further investigate these topics. Although I found that the 

FP-based threshold had the highest sensitivity out of the only two thresholds which met my 

minimum mean precision requirement of 0.95, the use of such a threshold requires manual audio 

validation of at least 100 detections per species potentially present. As such, it is a time-

consuming task that requires a skilled observer to discern the calls of all species present on the 

BirdNET output. Because of this, and due to the arbitrary threshold 0.75 likewise meeting the 

minimum requirement of a mean precision greater than or equal to 0.95, for those who may be 

unable to validate 100 detections of all possibly present species, it may be easiest to opt with an 

arbitrary threshold of 0.75. However, for those who are both skilled enough to discern species 

vocalizations and are able to dedicate enough time towards manual validation, a higher 

sensitivity can be reached by using the FP-based thresholds, and therefore less false negative 

errors. 

A few different issues prevented us from being able to calculate Modeled thresholds for 6 

species. For four of these 6 species (Barred Owl (Strix varia), Belted Kingfisher (Megaceryle 

alcyon), Eastern Towhee (Pipilo erythrophthalmus), and Kentucky Warbler (Geothlypis 

formosa)), the probability of a detection being a true positive detection never reached a value of 

0.95 (95%) at any confidence score (e.g., Figure B.1), thereby rendering it impossible to derive 

Modeled thresholds for these species. One of the six species (American Robin (Turdus 

migratorius)) was found to have a negative relationship between the probability of a BirdNET 
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detection being correct and the confidence score of a detection, meaning that the results from the 

logistic regression analysis showed that as the confidence score increased, the probability of a 

detection being a true positive decreased—the opposite relationship as expected (Figure B.2). I 

was also unable to derive a Modeled threshold for one species (Green Heron (Butorides 

virescens)) using this method due to the model not converging. I encountered additional issues 

which prevented us from calculating FP-based thresholds for 5 species (Table B.1). Of these five 

species, 2 (Summer Tanager (Piranga rubra) and Eastern Towhee (P. erythrophthalmus)) could 

not have valid thresholds calculated using the FP-based threshold methods due to their calculated 

thresholds exceeding a value of 1.0, which is the maximum possible confidence value for 

BirdNET detections. The other 3 species had incalculable thresholds using the FP-based 

threshold methods due to all 100 random BirdNET reports for each of these three species 

(Eastern Wood-Pewee (Contopus virens), Great Crested Flycatcher (Myiarchus crinitus), and 

Song Sparrow (Melospiza melodia)) being true positive reports, meaning there was no possible 

way to calculate species-specific threshold scores using this methodology. I was unable to 

calculate either a FP-based threshold or derive a Modeled threshold for the Eastern Towhee (P. 

erythrophthalamus).  

Although there were several species for which I was unable to calculate one or both 

species-specific thresholds for, it is possible that this could potentially be due to an insufficient 

range of confidence scores represented by the 100 random samples validated for some species. 

On behalf of my interest vested in streamlining the process of filtering BirdNET outputs, I 

elected to validate 100 random BirdNET reports per species as was practiced by Cole et al. 

(2022), rather than the higher number of reports per species used by Bota et al. (2023). Due to 

the majority of BirdNET detections having confidence scores at the lower end of the range of 
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possible values, coupled with my randomized sampling scheme for extracting individual species 

detections, a majority proportion of the manually validated detections were those with lower 

confidence scores. By intentionally stratifying the sampling scheme to select BirdNET detections 

representing the full range of possible confidence scores, it is perhaps possible to combat this 

issue. Despite this, only 2 of the 10 species for which I was unable to calculate one or both 

species-specific thresholds did not have the full range of possible confidence scores represented, 

meaning that this did not pose a problem for most species in my dataset. Nevertheless, given that 

I was also unable to calculate FP-based thresholds for 3 species due to them having 100 true 

positive detections, it is probable that by manually validating an additional number of random 

samples, at least one false positive could be found which would enable an FP-based threshold to 

be calculated; however, under such circumstances, it may be sufficient to conclude that in the 

geographic location and season in which the recording period for the validated dataset took 

place, BirdNET can accurately identify such a species with a high enough precision to perhaps 

lessen the need for any confidence-based filtering beyond BirdNET’s default 0.1 cut-off for that 

species.  

By filtering the unfiltered dataset with any of the threshold types, many statistically 

significant improvements were achieved, including a decrease in the number of false positive 

species reported per site visit, as well as an increase in precision, specificity, and in the case of 

the Modeled thresholds only—a statistically significant increase in MCC. Unfortunately, 

although the use of confidence-based thresholds proved to be quite proficient at excluding false 

positive species reports to reach an acceptable level of precision of 0.95 or greater for two of the 

threshold types (FP-based thresholds and the arbitrary 0.75 threshold), such methods also 

resulted in a statistically significant increase in the number of false negative species errors per 
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visit, and subsequently a decrease in sensitivity and F1 harmonic mean when applying any of the 

threshold types tested. As mentioned previously, regardless of the value of the value of a 

confidence-based threshold used to filter out false positives, as long as an overlap in confidence 

score values exists between true and false positive detections for a species, no confidence-based 

threshold filter would be able to exclude all false positives without also excluding at least some 

true positive values, thus increasing the number of false negative errors. This increase in false 

negative errors resulting from the use of confidence-based thresholds was also observed by Cole 

et al. (2022), to which they suggested increasing the sampling duration to combat the increased 

false negative errors—a recommendation which they backed by demonstrating that the 

likelihood of obtaining at least one detection with a confidence score meeting the threshold 

requirements increases as the sampling duration increases (Cole et al., 2022).  

The finding that warbler and vireo species richness increased more than double in 

privately owned blocks (5.42) compared to publicly owned blocks (2.15); however, this seems to 

be primarily since the mean richness for private blocks for the IBBA (7) was lower than the 

mean richness among the public blocks for the IBBA (11.69) (Table B.5). Additionally, the lower 

species richness detected among the privately owned blocks during the IBBA may be more likely 

due to the discrepancy between survey efforts between private versus public blocks, as private 

blocks were surveyed for a mean of 29 hours per block for the IBBA whereas public blocks were 

surveyed for a mean of 62.49 hours per block—more than double the effort for the private 

blocks. It is quite likely that this difference in survey effort between private and public blocks 

during the IBBA was due to the difficulty in securing permission from landowners to survey 

their property—an issue which we also had in some blocks and thus prevented us from being 

able to sample some blocks within the 11 southernmost Illinois counties. The difficulty in 
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securing landowner permission would mean that the IBBA volunteers had less land, and 

potentially fewer habitat types, to survey in blocks which were privately owned. In our dataset, 

we included only blocks in which we were able to secure access to survey 3 sub-blocks per 

primary block, thus attempting to prevent such bias. It is thus likely that privately owned blocks 

were under-surveyed during the IBBA, and thus are not as well represented as the publicly 

owned blocks surveyed during the IBBA. As such, it is likely that comparisons made between 

publicly owned blocks between the IBBA and 2022 datasets are more accurate than those 

between privately owned blocks. Nevertheless, an overall increase in species richness was 

detected even between the publicly owned blocks between the IBBA and 2022 datasets.  

For PAM users who hope to streamline the process of excluding false positives from 

BirdNET outputs in the quickest way possible while still ensuring a high precision and who hope 

to bypass validating a subset of species detections, setting the BirdNET threshold confidence cut-

off to a value of 0.75 may offer a quick and reliable method of filtering out nearly all false 

positives. Although I found the 0.75 threshold to have a mean precision of 0.99 ± 0.08 SD in my 

study, it should be noted that my investigation excluded species for which I could not calculate 

species-specific thresholds for, which was often due to either observing a negative relationship 

between the probability of a true positive detection and the confidence score of a detection, due 

to the species-specific threshold never reaching a probability of true detection = 0.95 across any 

confidence value, or due to the species-specific threshold value being calculated at a value 

greater than 1.0. As such, without conducting such a pilot study to first ensure that the target 

species can be reliably detected by the automatic species classifier, it is possible that a precision 

value lower than that I observed for the 0.75 threshold filter would be attained. Additionally, 

although I observed the 0.75 threshold as having the lowest mean sensitivity (0.18 ± 0.09 SD), 
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Cole et al. (2022) noted that, when using a confidence-based threshold to filter BirdNET output, 

the probability of detecting a species that is truly present increases as the length of the recording 

increases, and thereby making it is possible to combat the low sensitivity of such a conservative 

confidence score by increasing the amount of recording time during peak avian vocalization 

hours.  

Changes in Species Composition and Richness 

It is likely that some portion of the observed increase in warbler and vireo species 

richness may be due to increased observation hours per block. By using PAM efforts rather than 

point counts, I was able to increase the average number of hours each block was surveyed, as I 

achieved an average of 76.71 (SD = 96.34) hours of observation per block whereas the IBBA 

achieved an average of 47.8 (SD = 11.06) hours of observation per block. Given this increase in 

the average number of hours of observation, coupled with the fact that a positive relationship 

exists between the number of hours of observation and number of species detected per block, it is 

likely that a portion of the observed increase in species richness might be due to the increase in 

the average number of observation hours per block. Nevertheless, although the average number 

of warbler/vireo species detected per hour of observation for the IBBA (0.45 ± 0.30 SD) was 

higher than that of the 2022 dataset (0.18 ± 0.033 SD), this most likely has two explanations. 

First, less additional species were detected with each additional hour. Additionally, it is possible 

that human observers may detect bird vocalizations at a greater distance than PAM methods, and 

thus less hours of observation may be necessary to detect all present species with point counts 

than with the use of PAM. Furthermore, the fact that a higher number of species were detected 

per hour of observation for the IBBA data than for the 2022 data further supports that my 

findings represent a true increase in warbler and vireo species richness over time rather than the 
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observed increase in richness being due to an increase in the average number of observation 

hours per block. 

Furthermore, another possibility which could contribute towards the observed increase in 

species richness might be the result of some portion of the presence data consisting of false 

positive species reports. Although this is a possibility, given that the FP-based Thresholds tested 

to have an average precision = 0.95 (SD = 0.08), I believe it to be unlikely that the observed 

increase could be solely—or even majorly—explained by false positive species reports. Given 

that my precision calculation using the FP-based Threshold calculation method was based on 

species reports rather than individual detections, this would imply that approximately 5% of 

species detected per block might be accounted for by false positive species errors. Given that the 

average number of species detected per block was 13.24 (SD = 2.01), this would mean that it is 

unlikely that more than a single species detected can be attributed to a false positive (21 × 0.05 = 

0.66). Furthermore, given that the average precision of the FP-based filtering method greatly 

exceeds the sensitivity, there is a higher probability of false negative species errors rather than 

false positive species errors.  

 In addition to the average 36.38% increase in species richness, a significant shift in 

warbler and vireo species composition was observed between the IBBA (1986—1991) and the 

data (2022). The average Jaccard’s Similarity Index value of 0.49 was lower than—and thus 

suggests less similarity—than the average Sørensen’s Similarity Index value of 0.63; albeit, both 

values indicate considerably low similarity in species composition between the same blocks over 

the 30-year period. The average species turnover rate of 50.82% suggests a significant shift in the 

warbler and vireo species composition has occurred over the span of the last three decades in 

Southern Illinois. To compare, a study in which avian species composition and richness between 
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the same sites surveyed 20 years apart in Connecticut documented only a 20% species turnover 

over the 20-year period (Craig, 2024)—significantly less than the 50.82% species turnover over I 

documented across the blocks over a 30-year period. The increase in species richness, combined 

with the fact that the Jaccard’s Similarity Index value was lower than the Sørensen’s Similarity 

Index, suggests that the lower Jaccard’s value (indicating lower similarity) may be due to the 

richness increase contributing more towards the dissimilarity in species composition than the 

“replacement” of species. However, with the added context of the average species turnover rate 

being so high, this indicates that not only have new warbler and vireo species colonized the 

blocks, but the warbler and vireo community is very vulnerable to population shifts on a local 

scale, with Southern Illinois showing high dynamism in avian species composition.  

 Of the 6 warbler and vireo species which declined in occurrence among the 45 re-

sampled blocks, none of these species were found by the BBS to be experiencing statewide 

declines during the same 30-year time frame, suggesting that although these species may not be 

experiencing statewide declines, they are still experiencing declines in the Southern Illinois 

region (Table B.2; Ziolkowski et al., 2022). On the contrary, Illinois BBS data showed a 

statewide decline in 2 species (Black-and-white Warblers (M. varia) and Yellow-throated Vireos 

(V. flavifrons)) while I detected an increase in local occurrence for these species (Table B.2; 

Ziolkowski et al., 2022). Zooming out to compare my results with continental population trends, 

4 of the 6 species for which I detected decreases in occurrence between the IBBA and 2022 were 

also found to be decreasing on a continental scale by Partners in Flight (2022; Table B.2). 

Additionally, 2 species (Common Yellowthroats (G. trichas) and Prothonotary Warblers (P. 

citrea)) which were found to be decreasing on a continental scale by Partners in Flight were 

species which I found to either be stable or increasing in occurrence locally (Table B.2; Partners 
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in Flight, 2022). Interestingly, the population trends I observed aligned more closely with the 

population trends observed on a continental scale by Partners in Flight (2022) than with 

statewide BBS data for Illinois (Ziolkowski, 2022). Nevertheless, population trends deviating 

from both the statewide and continental-wide trends were observed in my study (Table B.2), 

highlighting the importance of conducting long-term, probabilistic population monitoring 

surveys.  

Of the 6 species which declined in occurrence between the IBBA to 2022, 2 of these 

species (Prairie Warblers (S. discolor) and Kentucky Warblers (G. formosa)) are on the Yellow 

Watch List (Partners in Flight, 2020), while 3 are listed as Species of Greatest Conservation 

Need by the Illinois Wildlife Action Plan, including Kentucky Warblers (G. formosa), Prairie 

Warblers (S. discolor), and Blue-winged Warblers (V. cyanoptera) (Illinois Wildlife Action Plan, 

2022). Interestingly, all species I detected as having declined in number of occupied blocks all 

preferred either open woodlands or scrub habitats, except for the Kentucky Warbler (G. formosa) 

(Cornell Lab of Ornithology, 2019a-f). Equally interestingly is that, of the 14 species which 

increased in the number of blocks detected, only 2 of these species prefer open woodlands 

(Yellow-throated Vireos (V. flavifrons) and Golden-winged Warblers (V. chrysoptera)), while 

only 1 preferred scrub habitat (Bell’s Vireos (V. bellii)) (Cornell Lab of Ornithology, 2019g-u). 

This pattern may therefore signify that an increase in open woodland and scrubby habitat in 

Southern Illinois is necessary to prevent further decline for these declining species. Also 

interesting was that a Red Watch List species—the Golden-winged Warbler (V. chrysoptera), 

increased in the number of blocks detected from the IBBA data to the 2022 data (Partners in 

Flight, 2020).  
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Although a portion of the southern Illinois region is considered within the breeding range 

of the Golden-winged Warbler (V. chrysoptera) by the Cornell Lab of Ornithology’s range map 

for the species (Cornell Lab of Ornithology, 2020), the species seems to be somewhat “new” to 

breeding in Southern Illinois, as it was not documented in the 45 blocks during the IBBA, nor 

did any confirmed eBird reports exist within the 11 southernmost Illinois counties between mid-

May to late June until its first confirmed eBird sighting in Jackson County in 2017 (Sullivan et 

al., 2009). Since its first confirmed eBird sighting during the breeding season in Jackson County 

in 2017, it has been sighted during the breeding season every year since then in Jackson County 

except for 2019 and 2023, thus suggesting that the species is truly present in the region—albeit 

rare (Sullivan et al., 2009). This expansion into Southern Illinois is quite significant given that 

the Golden-winged Warbler (V. chrysoptera) is a Red Watch List species and is also designated 

as a Species of Greatest Conservation Need by the Illinois Wildlife Action Program (Partners in 

Flight, 2020; Illinois Wildlife Action Plan, 2022). Additional species which are of conservation 

concern for which I observed an increase in the number of blocks detected include Prothonotary 

Warblers (P. citrea) and Ovenbirds (S. aurocapilla)—both of which are also listed as Species of 

Greatest Conservation Need (Illinois Wildlife Action Plan, 2022).  

CONCLUSION 

 Due to the overlap in confidence score values which exist between both true and false 

positive detections for each species, it is impossible to derive a confidence-based threshold 

which can successfully exclude all false positive detections without excluding at least some true 

positive detections—thus resulting in an increase in false negatives. Despite this, by increasing 

the number of observation hours (by increasing the amount of audio collected during peak 

vocalization time at a given site), it is possible to increase the probability that at least one 
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detection for the species of interest will have a confidence score high enough to exceed the 

threshold value being used to filter out false positive detections. Such methods therefore easily 

lend themselves to investigations inquiring about species richness and composition, but relying 

solely upon species-specific confidence threshold methods to filter automatic species classifier 

output may be ill-suited for other potential uses—particularly when research questions require 

the researcher to understand finer-scale details, such as when and how frequently the species 

vocalizes, or how many unique individuals are present, for example. Additionally, depending on 

how many species the researcher is focused on, it may be more fruitful to individually validate 

all detections for a given species—assuming that the researcher is focused with only one or a few 

species. Moreover, the purpose of the threshold comparison was not to advise all users of PAM 

to adopt these methods, but rather, to assess and compare the performance of individual, pre-

existing methods of streamlining automatic species classifier output, and to give an example of 

practical applications for which these methods are an excellent choice. Furthermore, although my 

research found the FP-based threshold method to be the best choice for my purposes, given my 

desire to implement whichever threshold tested achieved the highest mean sensitivity while 

requiring a mean precision ≥ 0.95, I acknowledge that this is not the only adequate threshold type 

available, and it may be possible to derive a threshold meeting my precision requirements while 

achieving a greater mean sensitivity than did the FP-based threshold.  

Although no “perfect” threshold can exist, either choosing a conservative threshold 

requiring minimum post-filtering validation as I did, or intentionally selecting a less conservative 

threshold which may require additional validation post-filtering, are both fine options for 

researchers interested in streamlining audio validation with the use of confidence-based 

thresholds. Additionally, unexplored possibilities for streamlining the validation process of 
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automatic species classifier data remain, as the use of confidence-based thresholds alongside the 

number of detections per unit of time remains unexplored to my knowledge. Potential exists for 

these methods to work in tandem, such as by decreasing the required species-specific threshold 

for recordings which have a minimum number of detections for a given species, or perhaps by 

requiring either a minimum number of detections per recording or a detection exceeding the 

confidence-based threshold value for a species to be considered present for a given site and 

sampling date.  

I advise against applying my exact species-specific threshold values to other geographic 

regions or seasons, as there are several factors which could influence the reliability of confidence 

scores assigned to BirdNET detections for a given species. For example, in this study system, I 

found that BirdNET’s assignment of confidence values to Cerulean Warbler (S. cerulea) 

detections was too unreliable for us to reliably filter false positives using a confidence-based 

threshold, as the validated Cerulean Warbler (S. cerulea) detection with the highest confidence 

value was found to be a false positive detection rather than a true positive detection. Despite this, 

I believe that this may be the result of a region-specific issue on account of this study system 

having an abundance of Northern Parulas (S. americana)—a species which frequently was 

misidentified as a Cerulean Warbler (S. cerulea) by BirdNET in my validation dataset, and thus 

in portions of the Cerulean Warbler (S. cerulea) range in which Northern Parulas (S. americana) 

are either absent or less abundant, BirdNET may be more reliable in such circumstances. 

Additionally, due to the tendency of many bird species with large geographic ranges to have a 

variety of regional “dialects,” it is quite possible that BirdNET may perform better or worse at 

identifying the same species in different portions of its range (Baker & Cunningham, 1985). In 

addition, the change in species composition, vocalization behavior, and the impact of juvenile 
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vocalizations (during periods in which a higher proportion of a population is comprised of 

juveniles), all serve as reasons for why researchers should avoid using the same species-specific 

threshold values year-round. Given these arguments, I strongly urge researchers who plan to use 

confidence-based thresholds to conduct a pilot study using audio collected during the time of 

year and within the geographic location for which they intend to collect the audio data they 

intend to filter using confidence-based thresholds. In addition to yielding more accurate species-

specific threshold values for an individual system and season, this process will also enable the 

researcher to discern whether their focal species is a good candidate for use with their automatic 

species classifier of choice.  

Although it is likely that some of the observed changes in species richness and 

composition can be attributed to an increase in observation hours given the positive relationship 

which exists between the number of observation hours and number of species detected, it is 

difficult to ascertain exactly how much of this increase can be attributed to the increase in the 

average number of observation hours per block given the difference in observation methods 

between the two surveys (point count versus PAM). Regardless, given that an average 36.38% 

increase in number of species detected per block was observed, I believe it to be unlikely that the 

IBBA observers missed such a high percentage of species per block on average as to account for 

the observed increase in species richness. This case study excellently demonstrated some of the 

challenges, as well as benefits, that can be expected when switching from point count data to 

PAM data for avian population monitoring. On one hand, PAM enables a small research team to 

survey a large geographic region in a single season for many more observation hours than would 

be feasible using traditional point count methods with the same number of people and with the 

same budget for the project, yet on the other hand, the difference in survey methods can cause 
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uncertainty when attempting to compare historical point count-based data with PAM data. 

Nevertheless, the promise of PAM is too great to ignore, and in a time when birds are decreasing 

at such alarming rates (Rosenberg et al., 2019), finding ways to maximize the geographic scope 

and frequency at which large-scale population monitoring efforts can be conducted is paramount 

to successful avian conservation. Furthermore, as PAM continues to grow in use, it will 

eventually become much easier to compare PAM data with other PAM data collected from 

different time periods, allowing for a more 1:1 comparison to be made for the future of avian 

population monitoring. Additionally, I hope to see the continuance of the use of PAM for avian 

population monitoring in Southern Illinois—not only to corroborate the patterns observed in this 

study, but also to continue to further our understanding of the dynamism of the Southern Illinois 

avian community. 

TABLES AND FIGURES 

Tables 

Table 2.1: Single factor (Threshold) mixed-effects nested ANOVA to compare effects of 

threshold type used for filtering data on: a.) the number of true positive species reported per visit, 

b.) the number of false positive species reported per visit, c.) the number of false negative 

species reported per visit, d.) sensitivity, e.) precision, f.) specificity, g.) F1 harmonic mean, and 

h.) MCC (Matthews correlation coefficient). Date (of visit) is nested within site (of visit). Type 

III ANOVA with Satterthwaite’s method was used. Data used was from all 36 site visits 

conducted between June 21—July 4, 2023, in Jackson County, Illinois, USA.  

Single Factor, Mixed-Effects Nested ANOVA 

a. True Positive Species 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 1153.7 288.43 155.45 2.2e-16 
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b. False Positive Species 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 1119.1 279.78 156.22 2.2e⁻16 

      

c. False Negative Species 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 1157 289.25 155.92 2.2e⁻16 

      

d. Precision 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 2.79 0.69653 122.15 2.2e⁻16 

      

e. Sensitivity 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 2.69 0.67358 213.67 2.2e⁻16 

 

a. Specificity 

 Df Sum Sq Mean Sq F value Pr(>F) 
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Threshold 4 0.582 0.1456 145.92 2.2e⁻16 

      

b. F1 Harmonic Mean 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 1.583 0.39585 102.33 2.2e⁻16 

      

c. MCC 

 Df Sum Sq Mean Sq F value Pr(>F) 

Threshold 4 0.327 0.081802 21.91 1.158e-13 

 

Table 2.2: Table containing P-values for all pairwise comparisons resulting from the Tukey’s 

HSD post-hoc test for threshold types, including unfiltered (“unfiltered”/no threshold used), 0.5-

filtered, 0.75-filtered, Modeled Threshold, and FP-based Threshold. P-values for the pairwise 

comparisons contrasted the significant difference between different threshold types on a.) the 

average number of true positive species reported per visit; b.) the average number of false 

positive species reported per visit; c.) the average number of false negative species reported per 

visit; d.) mean precision; e.) mean sensitivity; f.) mean specificity; g.) mean F1 Harmonic Mean; 

and h.) mean MCC (Matthews Correlation Coefficient). 
a. True Positive Species 

Threshold  
Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 
Threshold 

FP-based 
Threshold 

Unfiltered 

 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 
 

<0.0001 __ <0.0001 0.0001 0.2362 

0.75-filtered 
 

<0.0001 <0.0001 __ <0.0001 <0.0001 

Modeled 

Threshold 

<0.0001 0.0001 <0.0001 __ 0.0767 

FP-based 
Threshold 

<0.0001 0.2362 <0.0001 0.0767 __ 

b. False Positive Species 



58 
 

Threshold  
Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 
Threshold 

FP-based 
Threshold 

Unfiltered 

 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 
 

<0.0001 __ 0.8075 0.8688 0.9998 

0.75-filtered 
 

<0.0001 0.8075 __ 0.2439 0.8877 

Modeled 

Threshold 

<0.0001 0.8688 0.2439 __ 0.7824 

FP-based 
Threshold 

<0.0001 0.9998 0.8877 0.7824 __ 

c. False Negative Species 

Threshold  

Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 

Threshold 

FP-based 

Threshold 

Unfiltered 
 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 

 

<0.0001 __ <0.0001 0.0001 0.2361 

0.75-filtered 
 

<0.0001 <0.0001 __ <0.0001 <0.0001 

Modeled 
Threshold 

<0.0001 0.0001 <0.0001 __ 0.0767 

FP-based 

Threshold 

<0.0001 0.2361 <0.0001 0.0767 __ 

d. Precision 

Threshold  
Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 
Threshold 

FP-based 
Threshold 

Unfiltered 

 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 
 

<0.0001 __ 0.1682 0.4788 0.9965 

0.75-filtered 
 

<0.0001 0.1682 __ 0.0016 0.3252 

Modeled 

Threshold 

<0.0001 0.4788 0.0016 __ 0.2759 

FP-based 
Threshold 

<0.0001 0.9965 0.3252 0.2759 __ 

e. Sensitivity 

Threshold  

Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 

Threshold 

FP-based 

Threshold 
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Unfiltered 
 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 

 

<0.0001 __ <0.0001 <0.0001 0.1022 

0.75-filtered 
 

<0.0001 <0.0001 __ <0.0001 <0.0001 

Modeled 
Threshold 

<0.0001 <0.0001 <0.0001 __ 0.0366 

FP-based 

Threshold 

<0.0001 0.1022 <0.0001 0.0366 __ 

f. Specificity 

Threshold  
Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 
Threshold 

FP-based 
Threshold 

Unfiltered 

 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 
 

<0.0001 __ 0.8425 0.8714 0.9999 

0.75-filtered 

 

<0.0001 0.8425 __ 0.2801 0.8990 

Modeled 
Threshold 

<0.0001 0.8714 0.2801 __ 0.8076 

FP-based 
Threshold 

<0.0001 0.9999 0.8990 0.8076 __ 

g. F1 Harmonic Mean 

Threshold  

Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 

Threshold 

FP-based 

Threshold 

Unfiltered 
 

__ <0.0001 <0.0001 <0.0001 <0.0001 

0.5-filtered 

 

<0.0001 __ <0.0001 <0.0001 0.0559 

0.75-filtered 
 

<0.0001 <0.0001 __ <0.0001 <0.0001 

Modeled 
Threshold 

<0.0001 <0.0001 <0.0001 __ 0.0725 

FP-based 

Threshold 

<0.0001 0.0559 <0.0001 0.0725 __ 

h. Matthews Correlation Coefficient 

Threshold  
Type 

Unfiltered 0.5-filtered 0.75-filtered Modeled 
Threshold 

FP-based 
Threshold 

Unfiltered 

 

__ 0.9995 <0.0001 0.0081 

 

0.1230 
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0.5-filtered 
 

0.9995 __ <0.0001 0.0157 0.1931 

0.75-filtered 

 

<0.0001 <0.0001 __ <0.0001 <0.0001 

Modeled 
Threshold 

0.0081 
 

0.0157 <0.0001 __ 0.8589 

FP-based 
Threshold 

0.1230 0.1931 <0.0001 0.8589 __ 

 

Table 2.3: Table displaying the mean number of true positive (TP), false positive (FP), and false 

negative (FN) species reported per threshold type, as well as the mean values of precision, 

sensitivity, specificity, F1 harmonic mean, and MCC (Matthews Correlation Coefficient) for each 

threshold type used and for the unfiltered data (data pre-filtering).  

Threshold 
Used 

TP FP FN Precision Sensitivity Specificity F1 MCC 

Unfiltered 

 

11.31 6.58 9.14 0.64 0.55 0.85 0.58 0.42 

0.5-
filtered 

5.58  0.39 14.86 0.94 0.28 0.99 0.42 0.43 

0.75-
filtered 

3.69 0.03 16.94 0.99 0.18 1.00 0.30 0.35 

Modeled 

Threshold 

7.08 0.69 13.36 0.91 0.35 0.98 0.50 0.47 

FP-based 
Threshold 

6.25 0.33 14.19 0.95 0.31 0.99 0.46 0.46 

 

Table 2.4: The number of blocks each species was detected in the IBBA dataset, the 2022 dataset, 

and the number of increase or decrease in blocks detected per species from the IBBA to 2022 

dataset. Species are listed by current AOS standardized common names and by scientific names.  

Common Name 

 

Scientific Name 

 

Blocks  

Detected  

(IBBA) 

Blocks  

Detected  

(2022) 

Change in Blocks 

Detected  

(IBBA to 2022) 

American Redstart Setophaga ruticilla 8 38 30 

Bell’s Vireo Vireo bellii 3 11 8 
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Black-and-white 

Warbler 

Mniotilta varia 

6 19 13 

Blue-winged Warbler Vermivora cyanoptera 8 2 -6 

Common Yellowthroat Geothlypis trichas 45 45 0 

Golden-winged Warbler Vermivora chrysoptera 0 7 7 

Hooded Warbler Setophaga citrina 9 22 13 

Kentucky Warbler Geothlypis formosa 34 30 -4 

Louisiana Waterthrush Parkesia motacilla 26 40 14 

Northern Parula Setophaga americana 35 42 7 

Ovenbird Seiurus aurocapilla 15 38 23 

Pine Warbler Setophaga pinus 9 20 11 

Prothonotary Warbler Setophaga discolor 19 35 16 

Prairie Warbler Protonotaria citrea 20 11 -9 

Red-eyed Vireo Vireo olivaceus 38 44 6 

Warbling Vireo Vireo gilvus 28 23 -5 

White-eyed Vireo Vireo griseus 41 38 -3 

Worm-eating Warbler Helmitheros vermivorum 17 44 27 

Yellow Warbler Setophaga petechia 24 2 -22 
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Yellow-throated Vireo Vireo flavifrons 29 41 12 

Yellow-throated 

Warbler 

Setophaga dominica 

23 44 21 

 

Table 2.5: For each of the 45 IBBA primary blocks sampled, the number of hours of observation 

(hrs/block) for the IBBA survey and the 2022 survey are listed, as well as warbler and vireo 

species richness for both the IBBA survey and the 2022 survey, as well as Jaccard’s Similarity 

Index (JSI), Sørensen’s Similarity Index (SSI), and the percentage of Species Turnover.  

Block 

ID 

Hrs/Block 

(IBBA) 

Hrs/Block 

(2022) 

Richness 

(IBBA) 

Richness 

(2022) 

JSI 

 

 

SSI 

 

 

% Species 

Turnover 

278A3 24 64 15 14 0.53 0.69 47.37 

281D3 216.5 76 12 14 0.73 0.85 26.67 

278D3 16 60 13 14 0.80 0.89 20.00 

271D3 8 72 3 18 0.17 0.29 83.33 

274D3 26 84 11 13 0.41 0.58 58.82 

270A3 103.5 84 17 14 0.63 0.77 36.84 

274B3 30 68 10 16 0.44 0.62 55.56 

265C3 29 76 16 12 0.75 0.86 25.00 

262D3 60.5 88 3 13 0.14 0.25 85.71 

270B3 134.9 84 13 16 0.71 0.83 29.41 

271B3 39.1 72 14 14 0.56 0.71 44.44 
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271A3 37 88 15 15 0.76 0.87 23.53 

272B3 9.5 120 8 13 0.50 0.67 50.00 

272A3 7 76 9 14 0.64 0.78 35.71 

273B3 7.7 76 6 13 0.36 0.53 64.29 

273A3 19.5 60 5 13 0.20 0.33 80.00 

274A3 29.8 60 10 15 0.56 0.72 43.75 

270D3 15 72 11 16 0.50 0.67 50.00 

266D3 57 72 13 12 0.67 0.80 33.33 

265D3 69.1 72 13 12 0.56 0.72 43.75 

264C3 116 72 4 9 0.18 0.31 81.82 

264D3 14.5 68 9 10 0.36 0.53 64.29 

263D3 10.5 72 9 11 0.54 0.70 46.15 

262C3 8.5 76 5 16 0.31 0.48 68.75 

261C3 16.5 80 1 13 0.08 0.14 92.31 

261D3 10 84 2 12 0.17 0.29 83.33 

279B3 36 84 10 13 0.53 0.70 46.67 

278B3 12 60 12 11 0.53 0.70 46.67 

280D3 16 84 7 13 0.43 0.60 57.14 
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279C3 10 84 11 14 0.39 0.56 61.11 

279D3 27.1 72 5 13 0.29 0.44 71.43 

278C3 23 68 7 10 0.42 0.59 58.33 

283A3 16.5 84 9 13 0.69 0.82 30.77 

284B3 13.3 64 6 10 0.33 0.50 66.67 

286B3 15.5 68 6 10 0.33 0.50 66.67 

286A3 18 72 10 13 0.44 0.61 56.25 

271C3 7.5 72 4 15 0.27 0.42 73.33 

272C3 26.5 100 9 11 0.43 0.60 57.14 

272D3 33 84 12 16 0.75 0.86 25.00 

273C3 67.3 84 16 16 0.78 0.88 22.22 

273D3 14 72 14 12 0.63 0.77 37.50 

274C3 37.5 72 14 13 0.80 0.89 20.00 

275C3 21 84 14 14 0.65 0.79 35.29 

281A3 623.5 84 18 16 0.89 0.94 11.11 

280B3 18 84 6 11 0.31 0.47 69.23 

 

Table 2.6: North American Breeding Bird Survey counts for (data from Illinois routes only) by 

species for 1991 and 2022. Species listed by both common name and scientific name.  
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Common Name Scientific Name 1991 2022 

American Redstart Setophaga ruticilla 4 23 

Bell's Vireo Vireo bellii 2 35 

Black-and-white Warbler Mniotilta varia 1 0 

Blue-winged Warbler Vermivora cyanoptera 0 2 

Common Yellowthroat Geothlypis trichas 566 1115 

Golden-winged Warbler Vermivora chrysoptera 1 0 

Hooded Warbler Setophaga citrina 0 3 

Kentucky Warbler Geothlypis formosa 9 53 

Louisiana Waterthrush Parkesia motacilla 2 5 

Northern Parula Setophaga americana 11 119 

Ovenbird Seiurus aurocapilla 2 2 

Pine Warbler Setophaga pinus 4 4 

Prairie Warbler Setophaga discolor 15 19 

Prothonotary Warbler Protonotaria citrea 4 32 

Red-eyed Vireo Vireo olivaceus 28 138 

Warbling Vireo Vireo gilvus 139 346 

White-eyed Vireo Vireo griseus 45 229 
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Worm-eating Warbler Helmitheros vermivorum 1 4 

Yellow Warbler Setophaga petechia 55 70 

Yellow-throated Vireo Vireo flavifrons 24 22 

Yellow-throated Warbler Setophaga dominica 2 19 
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Figures 

Figure 2.1: Boxplots depicting the number species detected per visit made by BirdNET, 

including true positive species detected (left), false positive species (middle), and false negative 

species errors (right). Values depicted represent all threshold types, including, from left to right: 

Unfiltered (white), 0.5 (orange), 0.75 (red), Modeled (light blue), and FP-based (dark blue). 

Audio data was validated using point count data collected concurrently for the full duration of 

each visit. Six sites were visited six times each for a total of 36 site visits used for this data. Data 

was collected in Jackson County, Illinois, USA, between June 21 to July 4, 2023. 
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Figure 2.2: Boxplots comparing performance metrics precision, sensitivity, specificity, F1 

harmonic mean, and MCC (Matthews Correlation Coefficient). Values depicted for all five 

threshold types, including unfiltered. Values depicted represent all threshold types, including, 

from left to right: Unfiltered (white), 0.5 (orange), 0.75 (red), Modeled (light blue), and FP-based 

(dark blue). Six sites were visited six times each for a total of 36 site visits used for this data. 

Data was collected in Jackson County, Illinois, USA, between June 21 to July 4, 2023. 
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Figure 2.3: Map depicting primary blocks from the Illinois Breeding Bird Atlas which were re-

sampled in 2022. Block coloration dependent upon the number of warbler and vireo species lost 

or gained from the last Breeding Bird Atlas (1986—1991) to 2022. Primary blocks are overlaid 

over map depicting privately owned, non-protected land (light green) versus publicly owned and 

protected land (dark green). Map depicts the 11 southernmost Illinois counties.  
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Figure 2.4: Line graph depicting positive linear relationship between the number of observation 

hours and the observed species richness. Passive acoustic monitoring (PAM) data collected in 

2022 shown in red. Point count data collected during the IBBA shown in blue.  
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APPENDIX A 

THE EFFECTS OF AUTONOMOUS RECORDING UNIT CHOICE AND BIRDNET-

ANALYZER SETTINGS ON BIRDNET PERFORMANCE 

Tables 

Table A.1: Number of detections per detection source (point count, AudioMoth output, SM4 

output, SMMicro output, or SwiftOne output) across 36 site visits between June 21—July 4, 

2023, in Jackon County, Illinois, USA.  

Common Name Scientific Name Point 
Count 

AudioMoth SM4 SMMicro SwiftOne 

Acadian 
Flycatcher 

Empidonax virescens 12 11 10 10 11 

American Crow Corvus brachyrhynchos 
 

32 21 14 15 14 

American 
Goldfinch 

Spinus tristis 
 

15 6 6 6 8 

American 
Kestrel 

Falco sparverius 1 1 1 1 1 

American 
Redstart 

Setophaga ruticilla 2 2 1 1 0 

American Robin Turdus migratorius 3 0 0 0 0 
Baltimore 
Oriole 

Icterus galbula 2 2 1 0 0 

Barn Swallow Hirundo rustica 

 

5 2 0 2 1 

Barred Owl 
 

Strix varia 1 0 0 0 0 

Belted 
Kingfisher 

Megaceryle alcyon 
 

2 1 1 1 1 

Blue Groshbeak Passerina caerulea 
 

18 17 17 17 17 

Blue Jay Cyanocitta cristata 
 

23 11 6 6 8 

Blue-gray 
Gnatcatcher 

Polioptila caerulea 
 

11 7 4 3 4 

Brown Thrasher Toxostoma rufum 
 

7 6 6 3 5 

Brown-headed 
Cowbird 

Molothrus ater 
 

12 7 5 4 5 

Carolina 
Chickadee 

Poecile carolinensis 17 9 8 8 8 

Carolina Wren Thryothorus ludovicianus 
 

26 12 8 6 10 

Chimney Swift Chaetura pelagica 
 

1 0 0 0 0 



81 
 

Chipping 
Sparrow 

Spizella passerina 
 

2 2 1 2 2 

Common 
Grackle 

Quiscalus quiscula 
 

4 1 2 1 1 

Common 
Yellowthroat 

Geothlypis trichas 
 

35 17 10 9 17 

Dickcissel Spiza americana 
 

12 10 5 6 7 

Downy 
Woodpecker 

Picoides pubescens 12 8 8 4 7 

Eastern 
Bluebird 

Sialia sialis 
 

15 10 13 7 12 

Eastern 
Kingbird 

Tyrannus tyrannus 
 

12 11 10 10 11 

Eastern 
Meadowlark 

Sturnella magna 
 

7 6 5 5 5 

Eastern Phoebe Sayornis phoebe 
 

5 3 1 0 3 

Eastern Towhee Pipilo erythrophthalmus 
 

27 21 8 14 9 

Eastern Wood-
Pewee 

Contopus virens 
 

17 12 11 11 12 

European 
Starling 

Sturnus vulgaris 11 4 3 1 6 

Field Sparrow Spizella pusilla 
 

16 14 14 15 15 

Fish Crow Corvus ossifragus 
 

11 6 7 3 7 

Gray Catbird Dumetella carolinensis 
 

6 3 3 3 3 

Great Crested 
Flycatcher 

Myiarchus crinitus 
 

14 6 4 2 7 

Green Heron Butorides virescens 
 

4 3 4 3 4 

Hairy 
Woodpecker 

Leuconotopicus villosus 
 

2 2 2 0 2 

Hooded 
Warbler 

Setophaga citrina 
 

3 3 3 3 3 

House Finch Haemorhous mexicanus 4 

 

3 1 0 3 

House Sparrow Passer domesticus 
 

7 5 2 2 4 

Indigo Bunting Passerina cyanea 
 

33 28 25 28 23 

Kentucky 
Warbler 

Geothlypis formosa 
 

15 15 15 14 15 

Killdeer  Charadrius vociferus 
 

7 4 3 3 3 

Mourning Dove Zenaida macroura 32 16 14 8 15 
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Northern 
Bobwhite 

Colinus virginianus 
 

3 3 3 3 3 

Northern 
Cardinal 

Cardinalis cardinalis 
 

31 21 10 10 11 

Northern 
Flicker 

Colaptes auratus 
 

3 0 0 1 1 

Northern 
Mockingbird 

Mimus polyglottos 6 1 0 0 1 

Northern Parula Setophaga americana 
 

21 11 9 7 8 

Orchard Oriole Icterus spurius 
 

14 12 11 8 14 

Ovenbird Seiurus aurocapilla 
 

4 4 0 1 2 

Pileated 
Woodpecker 

Dryocopus pileatus 
 

1 0 0 0 1 

Pine Warbler Setophaga pinus 
 

3 1 2 1 2 

Prairie Warbler Setophaga discolor 
 

7 4 5 7 5 

Prothonotary 
Warbler 

Protonotaria citrea 1 1 1 1 1 

Purple Martin Progne subis 
 

7 7 5 4 6 

Red-bellied 
Woodpecker 

Melanerpes carolinus 
 

20 12 8 5 11 

Red-eyed Vireo Vireo olivaceus 
 

13 5 2 1 3 

Red-headed 
Woodpecker 

Melanerpes erythrocephalus 
 

4 3 4 2 3 

Red-shouldered 
Hawk 

Buteo lineatus 
 

10 6 6 6 6 

Red-winged 
Blackbird 

Agelaius phoeniceus 16 5 2 3 4 

Ruby-throated 
Hummingbird 

Archilochus colubris 
 

10 4 2 0 3 

Scarlet Tanager Piranga olivacea 
 

2 2 2 1 2 

Song Sparrow Melospiza melodia 
 

11 6 0 0 0 

Summer 
Tanager 

Piranga rubra 
 

15 11 13 7 13 

Tufted 
Titmouse 

Baeolophus bicolor 
 

29 11 5 4 7 

Warbling Vireo 
 

Vireo gilvus 9 9 7 6 9 

White-breasted 
Nuthatch 

Sitta carolinensis 
 

13 6 5 3 4 
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White-eyed 
Vireo 

Vireo griseus 
 

21 15 13 10 15 

Wild Turkey Meleagris gallopavo 
 

1 0 0 0 0 

Wood Thrush Hylocichla mustelina 
 

17 13 9 10 9 

Yellow Warbler Setophaga petechia 
 

4 2 0 0 0 

Yellow-billed 
Cuckoo 

Coccyzus americanus 
 

17 7 8 9 8 

Yellow-breasted 
Chat 

Icteria virens 
 

18 13 13 14 14 

Yellow-throated 
Vireo 

Vireo flavifrons 
 

5 5 3 4 4 

Yellow-throated 
Warbler 

Setophaga dominica 
 

6 6 6 5 5 

 

Table A.2: Average number of true positive species (per visit), false positive species (per visit), 

false negative species (per visit), precision, sensitivity, specificity, F1 harmonic mean, and MCC 

(Matthews correlation coefficient) by unit. All values were rounded to the second decimal place. 

Note that all values displayed were calculated using data from all 36 site visits.  

Unit TP 

Species 

FP 

Species 

FN 

Species 

Precision Sensitivity Specificity F1 MCC 

AudioMoth 14.92 11.97 8.56 0.55 0.64 0.88 0.59 0.49 

SM4 11.67 8.86 11.81 0.57 0.49 0.91 0.52 0.42 

SMMicro 10.36 8.08 13.11 0.57 0.44 0.92 0.49 0.39 

SwiftOne 13.03 10.08 10.44 0.57 0.55 0.90 0.55 0.45 

 

Table A.3: The mean number of true positive, false positive, and false negative species reported 

per visit for each Overlap and Sensitivity setting combination tested. All values were rounded to 

the second decimal place. Mean values were obtained by aggregating individual site visit values 

for each metric across all 36 site visits. All audio was collected using an AudioMoth, and was 

collected in Jackson County, Illinois, USA, between June 21—July 4, 2023.  

Overlap 

Setting 

Sensitivity 

Setting 

True Positive 

Species 

False Positive  

Species 

False Negative 

Species 

0 0.5 9.64 3.22 11.50 

0 1 11.75 7.22 9.39 

0 1.5 19.61 31.06 1.53 

0.5 0.5 9.61 3.75 11.53 

0.5 1 12.31 8.17 8.83 

0.5 1.5 19.83 32.61 1.31 

1 0.5 10.08 4.22 11.06 

1 1 12.33 8.42 8.81 

1 1.5 19.75 33.17 1.39 
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1.5 0.5 10.53 4.53 10.61 

1.5 1 12.89 9.53 8.25 

1.5 1.5 20.11 34.47 1.03 

2 0.5 10.83 5.53 10.31 

2 1 13.67 10.78 7.47 

2 1.5 20.17 35.72 0.97 

2.5 0.5 11.83 7.08 9.31 

2.5 1 14.75 13.50 6.39 

2.5 1.5 20.47 38.08 0.67 

 

Table A.4: The mean precision, sensitivity, specificity, F1 (F1 harmonic mean), and MCC 

(Matthews Correlation Coefficient) for each Overlap and Sensitivity setting combination tested. 

Setting combination Overlap = 0, Sensitivity = 1 is the default BirdNET settings. All values were 

rounded to the second decimal place. Mean values were obtained by aggregating individual site 

visit values for each metric across all 36 site visits. All audio was collected using an AudioMoth, 

and was collected in Jackson County, Illinois, USA, between June 21—July 4, 2023.  

Overlap 
Setting 

Sensitivity 
Setting 

Precision Sensitivity Specificity F1  MCC 

0 0.5 0.76 0.46 0.93 0.56 0.46 

0 1 0.63 0.56 0.85 0.58 0.42 

0 1.5 0.39 0.93 0.36 0.54 0.30 

0.5 0.5 0.72 0.46 0.92 0.55 0.44 

0.5 1 0.61 0.59 0.83 0.59 0.42 

0.5 1.5 0.38 0.94 0.33 0.54 0.29 

1 0.5 0.71 0.48 0.91 0.56 0.44 

1 1 0.60 0.59 0.83 0.58 0.41 

1 1.5 0.38 0.94 0.32 0.53 0.27 

1.5 0.5 0.71 0.50 0.91 0.58 0.46 

1.5 1 0.59 0.61 0.80 0.59 0.41 

1.5 1.5 0.37 0.95 0.29 0.53 0.27 

2.0 0.5 0.67 0.51 0.89 0.57 0.44 

2.0 1 0.56 0.65 0.78 0.60 0.41 

2.0 1.5 0.36 0.95 0.27 0.52 0.25 

2.5 0.5 0.63 0.56 0.85 0.59 0.43 

2.5 1 0.53 0.70 0.72 0.59 0.39 

2.5 1.5 0.35 0.97 0.22 0.51 0.23 
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APPENDIX B 

COMPARING METHODS OF STREAMLINING BIRDNET ANALYZER VALIDATION FOR 

LONG-TERM AVIAN POPULATION 

Tables 

Table B.1: List of all threshold values by threshold type for all species included in point counts. 

Threshold values containing NA could not be calculated from the validation data. 

Common Name Alpha 

Code 

Modeled FP-based 0.5 0.75 

Acadian Flycatcher ACFL 0.48 0.47 0.5 0.75 

American Crow AMCR 0.20 0.27 0.5 0.75 

American Goldfinch AMGO 0.31 0.37 0.5 0.75 

American Kestrel AMKE 0.47 0.40 0.5 0.75 

American Redstart AMRE 0.37 0.37 0.5 0.75 

American Robin AMRO NA 0.72 0.5 0.75 

Baltimore Oriole BAOR 0.48 0.51 0.5 0.75 

Barn Swallow BARS 0.32 0.38 0.5 0.75 

Barred Owl BADO NA 0.90 0.5 0.75 

Belted Kingfisher BEKI NA 0.89 0.5 0.75 

Blue Grosbeak BLGR 0.39 0.45 0.5 0.75 

Blue Jay BLJA 0.33 0.38 0.5 0.75 

Blue-gray Gnatcatcher BGGN 0.10 0.33 0.5 0.75 

Brown Thrasher BRTH 0.93 0.84 0.5 0.75 

Brown-headed Cowbird BHCO 0.25 0.32 0.5 0.75 

Carolina Chickadee CACH 0.24 0.34 0.5 0.75 

Carolina Wren CARW 0.86 0.71 0.5 0.75 

Chimney Swift CHSW 0.44 0.40 0.5 0.75 

Chipping Sparrow CHSP 0.30 0.36 0.5 0.75 

Common Grackle COGR 0.50 0.60 0.5 0.75 

Common Yellowthroat COYE 0.17 0.27 0.5 0.75 

Dickcissel DICK 0.17 0.35 0.5 0.75 

Downy Woodpecker DOWO 0.39 0.40 0.5 0.75 

Eastern Bluebird EABL 0.64 0.69 0.5 0.75 

Eastern Kingbird EAKI 0.13 0.19 0.5 0.75 

Eastern Meadowlark EAME 0.25 0.44 0.5 0.75 

Eastern Phoebe EAPH 0.28 0.37 0.5 0.75 

Eastern Towhee EATO NA NA 0.5 0.75 

Eastern Wood-Pewee EAWP 0.10 NA 0.5 0.75 

European Starling EUST 0.16 0.27 0.5 0.75 
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Field Sparrow FISP 0.37 0.41 0.5 0.75 

Fish Crow FICR 0.38 0.36 0.5 0.75 

Gray Catbird GRCA 0.45 0.53 0.5 0.75 

Great Crested Flycatcher GCFL 0.10 NA 0.5 0.75 

Green Heron GRHE NA 0.78 0.5 0.75 

Hairy Woodpecker HAWO 0.60 0.71 0.5 0.75 

Hooded Warbler HOWA 0.59 0.78 0.5 0.75 

House Finch HOFI 0.30 0.43 0.5 0.75 

House Sparrow HOSP 0.21 0.42 0.5 0.75 

Indigo Bunting INBU 0.25 0.31 0.5 0.75 

Kentucky Warbler KEWA NA 0.96 0.5 0.75 

Killdeer KILL 0.10 0.32 0.5 0.75 

Mourning Dove MODO 0.12 0.19 0.5 0.75 

Northern Bobwhite NOBO 0.65 0.53 0.5 0.75 

Northern Cardinal NOCA 0.50 0.46 0.5 0.75 

Northern Flicker NOFL 0.34 0.39 0.5 0.75 

Northern Mockingbird NOMO 0.51 0.36 0.5 0.75 

Northern Parula NOPA 0.40 0.56 0.5 0.75 

Orchard Oriole OROR 0.28 0.42 0.5 0.75 

Ovenbird OVEN 0.61 0.54 0.5 0.75 

Pileated Woodpecker PIWO 0.92 0.87 0.5 0.75 

Pine Warbler PIWA 0.34 0.50 0.5 0.75 

Prairie Warbler PRAW 0.55 0.79 0.5 0.75 

Prothonotary Warbler PROW 0.58 0.61 0.5 0.75 

Purple Martin PUMA 0.50 0.56 0.5 0.75 

Red-bellied Woodpecker RBWO 0.37 0.70 0.5 0.75 

Red-eyed Vireo REVI 0.22 0.41 0.5 0.75 

Red-headed Woodpecker RHWO 0.64 0.70 0.5 0.75 

Red-shouldered Hawk RSHA 0.27 0.49 0.5 0.75 

Red-winged Blackbird RWBL 0.14 0.22 0.5 0.75 

Ruby-throated Hummingbird RTHU 0.59 0.40 0.5 0.75 

Scarlet Tanager SCTA 0.41 0.37 0.5 0.75 

Song Sparrow SOSP 0.10 NA 0.5 0.75 

Summer Tanager SUTA 0.70 NA 0.5 0.75 

Tufted Titmouse TUTI 0.32 0.43 0.5 0.75 

Warbling Vireo WAVI 0.21 0.27 0.5 0.75 

White-breasted Nuthatch WBNU 0.10 0.49 0.5 0.75 

White-eyed Vireo WEVI 0.21 0.66 0.5 0.75 

Wild Turkey WITU 0.72 0.83 0.5 0.75 

Wood Thrush WOTH 0.30 0.44 0.5 0.75 

Yellow Warbler YEWA 0.57 0.42 0.5 0.75 
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Yellow-billed Cuckoo YBCU 0.66 0.93 0.5 0.75 

Yellow-breasted Chat YBCH 0.47 0.44 0.5 0.75 

Yellow-throated Vireo YTVI 0.60 0.77 0.5 0.75 

Yellow-throated Warbler YTWA 0.44 0.47 0.5 0.75 

 

Table B.2: Showing population trends identified by different sources (IBBA—2022, Illinois-only 

BBS (1991—2022), and Partners in Flight) for all analyzed warbler and vireo species listed by 

common name and scientific name. Blue cells represent an increase over time, red cells represent 

a decrease over time, and white cells represent no change or uncertainty. Illinois Breeding Bird 

Atlas (IBBA) data used was collected between 1986—1991 for the 45 blocks which I resampled 

in 2022 using ARUs and filtered BirdNET output. The North American Breeding Bird Survey 

data used was for the state of Illinois only, and from 1991—2022. Partners in Flight (PIF) data 

show continental-level trends.  

Common Name Scientific Name IBBA–2022 BBS (IL) PIF 

American Redstart Setophaga ruticilla    

Bell’s Vireo Vireo bellii    

Black-and-white Warbler Mniotilta varia    

Blue-winged Warbler Vermivora cyanoptera    

Common Yellowthroat Geothlypis trichas    

Golden-winged Warbler Vermivora chrysoptera    

Hooded Warbler Setophaga citrina    

Kentucky Warbler Geothlypis formosa    

Louisiana Waterthrush Parkesia motacilla    

Northern Parula Setophaga americana    

Ovenbird Seiurus aurocapilla    

Pine Warbler Setophaga pinus    

Prairie Warbler Setophaga discolor    

Prothonotary Warbler Protonotaria citrea    

Red-eyed Vireo Vireo olivaceus    

Warbling Vireo Vireo gilvus    

White-eyed Vireo Vireo griseus    

Worm-eating Warbler Helmitheros vermivorum    

Yellow Warbler Setophaga petechia     

Yellow-throated Vireo Vireo flavifrons    

Yellow-throated Warbler Setophaga dominica    

 

Table B.3: Comparing the preferred habitat of each species with its respective gain/loss of 

primary blocks in occurrence from the Illinois Breeding Bird Atlas to 2022.  

Species 
Alpha 
Code Habitat Nesting Gain/Loss 

American Redstart AMRE Forests Tree 30 
Bell's Vireo BEVI Scrub Shrub 8 
Black-and-white Warbler BAWW Forests Ground 13 
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Blue-winged Warbler BWWA Open Woodlands Ground -6 
Common Yellowthroat COYE Scrub Shrub 0 
Golden-winged Warbler GWWA Open Woodlands Ground 7 
Hooded Warbler HOWA Forests Shrub 13 
Kentucky Warbler KEWA Forests, Ground -4 

Louisiana Waterthrush LOWA 
Rivers, and 
Streams Ground 14 

Northern Parula NOPA Forests Tree 7 
Ovenbird OVEN Forests Ground 23 
Pine Warbler PIWA Forests Tree 11 
Prairie Warbler PRAW Scrub Shrub 16 
Prothonotary Warbler PROW Forests Cavity -9 
Red-eyed Vireo REVI Forests Tree 6 
Warbling Vireo WAVI Open Woodlands Tree -5 
White-eyed Vireo WEVI Scrub Shrub -3 
Worm-eating Warbler WEWA Forests Ground 27 
Yellow Warbler YEWA Open Woodlands Shrub -22 
Yellow-throated Vireo YTVI Open Woodlands Tree 12 
Yellow-throated Warbler YTWA Forests Tree 21 

 

Table B.4: Comparing the warbler and vireo species richness between private and public blocks 

from both the Illinois Breeding Bird Atlas (IBBA) and 2022 survey datasets. 

 IBBA 2022 
Ownership Richness Hours of obs. Richness Hours of obs. 

Private 7 29 12.42 74.95 
Public 11.69 62.49 13.85 78.46 

 

 

  



89 
 

Figures 

 
Figure B.1: Logistic regression analysis performed using 100 random detections from BirdNET 

which were manually validated. The blue line represents the relationship between the probability 

of a correction detection and the confidence score for a given BirdNET detection for Barred 

Owls. Since the blue line never reaches a probability of 0.95, a species-specific confidence score 

could not be derived for this species using the logistic regression analysis.  
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Figure B.2: Logistic regression analysis performed using 100 random detections from BirdNET 

which were manually validated. The blue line represents the relationship between the probability 

of a correction detection and the confidence score for a given BirdNET detection for American 

Robins (Turdus migratorius). Since the blue line has a negative slope (implying that the 

probability of a BirdNET detection being a true positive detection decreases as the confidence 

score increases), a species-specific confidence score should not be derived for this species using 

the logistic regression analysis. 
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