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MACHINE LEARNING MODELS FOR RAINFALL-RUNOFF SIMULATION WITH 

APPLICATION OF SATELLITE AND RADAR PRECIPITATION PRODUCTS 

 

MAJOR PROFESSOR: Dr. Ajay Kalra 

 

Hydrology Modeling using HEC-HMS (Hydrological Engineering Centre-Hydrologic 

Modeling System) is accepted globally for event-based or continuous simulation of the rainfall-

runoff operation. Similarly, Machine learning is a fast-growing discipline that offers numerous 

alternatives suitable for hydrology research's high demands and limitations. Conventional and 

process-based models such as HEC-HMS are typically created at specific spatiotemporal scales 

and do not easily fit the diversified and complex input parameters. Therefore, in this research, the 

effectiveness of Random Forest, a machine learning model, was compared with HEC-HMS for 

the rainfall-runoff process. In addition, Point gauge observations have historically been the 

primary source of the necessary rainfall data for hydrologic models. However, point gauge 

observation does not provide accurate information on rainfall's spatial and temporal variability, 

which is vital for hydrological models. Therefore, this study also evaluates the performance of 

satellite and radar precipitation products for hydrological analysis. The results revealed that 

integrated Machine Learning and physical-based model could provide more confidence in 

rainfall-runoff and flood depth prediction. Similarly, the study revealed that radar data 

performance was superior to the gauging station's rainfall data for the hydrologic analysis in 

large watersheds. The discussions in this research will encourage researchers and system 

managers to improve current rainfall-runoff simulation models by application of Machine 

learning and radar rainfall data. 
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CHAPTER 1 

INTRODUCTION 

1.1 RESEARCH BACKGROUND 

 Flooding events are among the most disastrous and costly calamities affecting a large 

number of populations worldwide. Floods are considered to have a significant global impact 

compared to other natural disasters such as drought, heatwave, and wildfires, as they can cause 

extensive damage and destruction of lives and property of the worldwide population. Nearly 30% 

of the total economic damages from all-natural catastrophes worldwide are attributed to flood 

destruction (Abbott et al. 1986). There has been a widespread acknowledgment of the effects of 

climate change and urbanization(Kalra et al. 2008, 2013b; Kalra and Ahmad 2011; Pathak et al. 

2017; Sagarika et al. 2014), which resulted in a significant increase in the frequency and severity 

of urban floods in many parts of the world (Thakali et al. 2016; Thakur et al. 2020b; Acharya et 

al. 2020). 

 Climate change is anticipated to substantially impact the timing, duration, and intensity of 

rainfall events, which would significantly intensify flooding events in many urban cities 

worldwide and increase future flood risk and related losses in the absence of effective 

mitigation(Thakur et al. 2020c; b). Similarly, urbanization has transformed the pervious natural 

topography to the more impervious surface due to infrastructural development and anthropogenic 

activities. The increase in impervious surfaces decreases the abstraction capacity of soil by which 

all rainfalls are converted into runoff, creating significant flooding events. 

 Governments, researchers, and engineers are focusing on analyzing the influence of 

climate change and urbanization on flood risk to prepare cities, apply viable adaptation 

strategies, and make informed choices about mitigation techniques(Pathak et al. 2018). Planning 
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and implementing flood management techniques in vulnerable locations is only possible with 

accurate rainfall-runoff modeling(Shrestha et al. 2020a). In this context, various process-based 

models have been developed till data to accurately analyze rainfall-runoff simulations during 

high-intensity rainfall events. Hydrologic Engineering Center-Hydrologic Modeling System 

(HEC-HMS) and Personal Computer Storm Water Management (PCSWMM) are widely used to 

analyze the rainfall-runoff of rural and urban watersheds. However, calibrating and verifying a 

physical-based model like HEC-HMS and PCSWMM requires a substantial amount of 

topographic and meteorological data, which is difficult to obtain in data scarce regions. 

Additionally, there are disadvantages to utilizing a physical-based hydrological model because it 

is challenging to comprehend the intricate, nonlinear, and interconnected hydrology. 

 In this context, different Machine learning models has been developed till date which has 

shown good performance in hydrology domain. Random Forest, developed by (Breiman 2001) is 

a Machine learning model which has shown good performance in hydrology domains such as 

flood mapping and risk analysis. However, Random Forest is rarely used in the analysis of 

Rainfall-Runoff simulation. Therefore, this study evaluates the performance of process based 

model and Random Forest Model to generate the runoff hydrograph during different events of 

rainfall.  

 Rainfall data, a meteorological data, is the most important datasets for the hydrologic 

analysis of the watershed. In hydrology, accurate geographical and temporal variation of rainfall 

data are essential for generating accurate flood discharge. Rainfall is typically measured and 

estimated using rain gauging stations. However, in most watersheds, the gauging station is not 

always available. In addition, it is challenging to determine the spatial variability of rainfall at 

the watershed scale through a rainfall gauging station. Therefore, this study applies satellite and 
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radar precipitation products to accurately predict the flooding discharge during high intensity 

flooding events. 

1.2 PROBLEM STATETMENT AND OBJECTIVES 

 Flooding events are among the most disastrous and costly calamities affecting many 

populations worldwide. Climate change has synergistically interacted with urbanization to 

produce extreme flooding and drought events, which has significantly impacted many cities of 

the world(Joshi et al. 2020). Hydrological analysis is the foremost stage in studying the impact of 

such extreme flooding events in urban areas and applying possible flood mitigation 

strategies(Bhandari et al. 2018). Different process-based models, such as HEC-HMS and 

PCSWMM, have been developed to replicate urban hydrological processes accurately. However, 

the process-based models require a large number of data sets which may not always be available 

in the data-scarce region. In this context, machine learning tools have served as an alternative 

tool to analyze rainfall-runoff simulation in a data-scarce region. Furthermore, rainfall datasets, 

crucial data for hydrological analysis, are not always available in the watershed. In such 

conditions, radar and satellite-based precipitation datasets can be applied for hydrological 

analysis. 

 In this context the primary objective of this study is to determine the effectiveness of 

process-based models and random forest models for the hydrological analysis in a data scarce 

region by the satellite precipitation product. In the first part of this research, the effectiveness of 

Random Forest is compared with the HEC-HMS model using Precipitation Estimation from 

Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System 

(PERSIANN-CSS) precipitation, a satellite precipitation product. In addition, this study also 
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determined the appropriateness of applying Random Forest generated discharge for hydraulic 

modeling using Hydrologic Analysis Center's River Analysis Model (HEC-RAS). 

 The second part of this study integrates the PCSWMM with NOAA Next Generation 

Radar (NEXRAD-III) precipitation product for the hydrological analysis of the urban watershed. 

In addition, this study determines the appropriateness of NEXRAD-III precipitation product for 

hydrological analysis by comparing it with the discharge hydrograph generated from gauging 

station precipitation data.  

Research Question #1: Is the Random Forest Model application feasible for the rainfall-runoff 

simulations in the data-scarce urban watershed? 

Hypothesis #1: The random forest model is anticipated to perform as an alternative model for 

hydrological analysis. 

Research Question #2: What is the effectiveness of satellite and radar rainfall products for the 

hydrological investigation in an urban watershed? 

Hypothesis #2: Satellite and radar precipitation products can offer spatial and temporal 

variations of precipitation data at a watershed scale. 

1.3 RESEARCH OUTLINE 

The project follows a manuscript structure beginning with an introduction. Two 

manuscripts are combined in this study for the completion of this research. The second chapter, 

titled "Application of Machine Learning and Process-based models for rainfall-runoff simulation 

in Du Page River basin, Illinois," addresses research question #1. Furthermore, the third chapter, 

titled " Evaluating the performance of PCSWMM using NEXRAD data for urbanized watersheds 

" and the second chapter addresses research question #2. Chapter four outlines this project's 

outcomes and suggests future research recommendations.  
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CHAPTER 2 

APPLICATION OF MACHINE LEARNING AND PROCESS-BASED MODELS FOR 

RAINFALL-RUNOFF SIMULATION IN DUPAGE RIVER BASIN, ILLINOIS 

2.1 INTRODUCTION 

 Floods are one of the most common and costly natural catastrophes all around the 

world(Gaume et al. 2009; Merwade et al. 2008; Merz et al. 2010). The magnitude and frequency 

of extreme flooding events have increased considerably worldwide over the previous few 

decades (Ghazali et al. 2018). Climate change, urbanization, and other anthropogenic activities 

are causing a flood risk globally (Faccini et al. 2018; Joshi et al. 2021). A water-related natural 

hazard such as floods, drought, and a landslide has become the new normal due to the 

uncertainty in rainfall patterns and magnitude caused by climate change and urbanization 

(Parajuli et al. 2017; Pathak et al. 2017; Shrestha et al. 2020b). Flooding is projected to become 

more common in the coming years as the frequency of extreme precipitation events increases 

(Guerreiro et al. 2018; Jenkins et al. 2017). 

Flood severity increases, resulting in high flood fatalities, massive economic loss, and 

social consequences (Min et al. 2011). Given the negative consequences of flooding, developing 

floodplain management plans to avoid and mitigate flood damage is critical (Vörösmarty et al. 

2013). The flood risk assessment depends on a precise estimation of peak runoff, calculated by 

rainfall-runoff simulation (Woznicki et al. 2019a). Accurate rainfall-runoff simulation is a 

prominent topic in hydrology research (Archer and Fowler 2018). Precise rainfall-runoff 

modeling is essential for planning and applying flood control strategies in vulnerable areas to 

reduce the dangers to human life and infrastructure during high precipitation events. Different 

hydrology models have been used to perform a rainfall-runoff simulation in a watershed. The 
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Hydrologic Modeling System (HMS), designed by the Hydrologic Engineering Center (HEC) of 

the United States Army Corps of Engineers, is a popular rainfall-runoff analysis tool worldwide 

(Kastridis and Stathis 2017). 

Process-based physical models are typically employed to calculate runoff in a particular 

catchment area. By integrating regional variability in the watershed, a physical-based model like 

HEC-HMS can compute an actual hydrology system (Schoppa et al. 2020). The hydrology 

modeling using the HEC-HMS model can investigate urban floods, flood frequency, flood 

warning system, and effectiveness of spillways and detention ponds over a watershed (Talei et al. 

2010). The HEC-HMS model is made up of four essential components. An analytical method is 

first applied to compute direct discharge and reach routing. Secondly, a basin model with 

interactive components is employed for depicting hydrology aspects within a catchment. Third, 

Data is entered, edited, managed, and stored via a system. Fourth, the simulation results are 

reported and illustrated using a functional system (Singh and Frevert 2010). Finally, the 

calibration procedure, which compares simulated outcomes to observed data, can help to enhance 

the model's precision and predictability. With the regional and temporal variety of catchment 

features, rainfall patterns, and the number of variables applied in modeling physical processes, 

the connection between precipitation and discharge using HEC-HMS is challenging (Halwatura 

and Najim 2013). A physical-based model such as HEC-HMS necessitates a large amount of 

data such as land use and land cover, soil group data, infiltration data, and a significant amount 

of time to calibrate to ensure the correctness of the model (Scharffenberg 2016). Furthermore, 

there are drawbacks to using a physical-based hydrology model, owing to the difficulties in 

completely understanding the complicated, nonlinear, and interrelated hydrology (Senthil Kumar 

et al. 2005). The hydrology model using HEC-HMS can be unsuitable for a larger watershed 
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with scarce data. Therefore, as a complement to the physical model, recently, the application of 

Machine learning and the data-driven model has been used across hydrology domains (Kim et al. 

2015; Rezaeianzadeh et al. 2013).  

Machine learning is a kind of artificial intelligence that can make an accurate prediction 

by training and testing datasets. Machine learning provides a solution to a real-world problem by 

studying previously observed data and has been effective in generating accurate results (Sahoo et 

al. 2017). ML provides adequate computation power (Rajaee et al. 2020; Zounemat-Kermani et 

al. 2021) and is used in a wide variety of research and applications in hydrology(Ahmad et al. 

2010; Thakur et al. 2020a). Some examples of ML applications in the hydrology domain are 

rainfall-runoff prediction (Jordan and Mitchell 2015; Mewes et al. 2020), flood forecasting 

(Adnan et al. 2021; Bhandari et al. 2019; Kalra et al. 2013b; Kalra and Ahmad 2007; Parisouj et 

al. 2020), sedimentation study (Nguyen and Chen 2020; Shamshirband et al. 2020; Zhou et al. 

2022b), water quality prediction (Carrier et al. 2013; Choubin et al. 2018; Kalra et al. 2013a, 

2018; Rezaei et al. 2021; Rezaei and Vadiati 2020) , groundwater prediction (Deng et al. 2021; 

Rahaman et al. 2019; Wang et al. 2022), river temperature prediction (Asadollah et al. 2021; 

Hussein et al. 2020; Khedri et al. 2020; Melesse et al. 2020), and rainfall estimation (Chang and 

Psaris 2013; Zhu and Piotrowski 2020). In recent years, ML algorithms have significantly 

improved and are also widely used for rainfall-runoff simulation (Feigl et al. 2021; Weierbach et 

al. 2022), thanks to the rapid advancement of computer technology. Recently, many researchers 

performed rainfall-runoff predictions using different Machine Learning and Data-driven models. 

Some examples of these models are long short-term memory (Radhakrishnan et al. 2022; Zhang 

et al. 2022), artificial neural networks (Chiang et al. 2022; Guo et al. 2021), support vector 

machines (Ni et al. 2020; Yin et al. 2022), and the random forest model (Tikhamarine et al. 
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2020; Woznicki et al. 2019a). Random Forest is a popular machine learning tool, and Breiman 

developed it first in 2001 (Tamiru and Dinka 2021). The Random Forest has recently acquired 

popularity as a powerful predictive modeling tool, and many researchers are using it in their 

fields as a potential method (Samantaray et al. 2022). It is a classification and regression tree-

based ensemble learning algorithm (Tamiru and Dinka 2021). A bootstrap sample is used to train 

each tree, and optimal variables at each split are chosen from a random subset of all variables. 

Random Forest offers the highest accuracy of any contemporary method and works quickly on 

large datasets (Adnan et al. 2020). 

Previous studies showed that the Random forest's performance surpassed other Machine 

Learning and data-driven tools such as artificial neural networks, regression models, and support 

vector machines in multiple comparative studies in hydrology (Adnan et al. 2020; Breiman 2001; 

Meng et al. 2021; Worland et al. 2018; Zhou et al. 2019). However, random forest is the least 

used for hydrology analysis among the data-driven and machine learning models (Li et al. 2016). 

Among the few applications of Random Forest, most of these studies focused on flood risk 

hazards (Bachmair et al. 2017; Woznicki et al. 2019b) and mapping (Erdal and Karakurt 2013). 

Therefore, in this study, an assessment of Random Forest for rainfall-runoff prediction in a 

watershed is performed. The main aim of this research is to determine the effectiveness of the 

Random Forest model for rainfall-runoff operation in the scarce data region. Therefore, this 

research also used satellite precipitation product for rainfall-runoff simulation and determined its 

appropriateness in hydrology research. Furthermore, this study also assessed the appropriateness 

of using Random Forest generated discharge for hydraulic modeling using (Hydrologic Analysis 

Center's River Analysis Model) HEC-RAS. 
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  HEC-RAS is the most widely accepted model (Muñoz et al. 2018), for analyzing channel 

flow and floodplain characterization (Tyralis et al. 2019). Users can compute one-dimensional 

steady and unsteady flow, two-dimensional unsteady flow, sediment transport computations, and 

water quality models by using HEC-RAS (Tyralis et al. 2019). Regularizing geometric data and 

identifying hydraulic structures (weirs, culverts, reservoirs, pump stations, bridges, levees, gates, 

blockage and ineffective regions, land use, Manning roughness coefficient, streambed slope, and 

ice cover) and their situations are achievable with HEC-RAS (Wang et al. 2015). The model 

employs geometric data and, geometric and hydraulic computer algorithms to model natural and 

artificial streams. HEC-RAS requires fundamental inputs such as river discharge, channel 

geometry, bank lines, flow paths, and channel resistance. The discharge generated by Random 

Forest is employed as an input parameter in this study. While HEC-RAS model has a wide 

variety of capabilities, the current research considered its capability to execute 1D river flow and 

calculate the flood depth at the most downstream section of the study reach. 

The integration of different models in the sectors of hydrology and hydraulic domains is 

gaining global attention and is crucial for flood risk management techniques (Feng et al. 2015). 

The novelty of this research is to assess the effectiveness of the Random Forest model for 

rainfall-runoff simulation using satellite precipitation products in a data-scarce region. This 

research work also evaluated the integration of Machine learning and a HEC-RAS model for 

calculating water depth at the proposed study location during the study period. The following is 

an outline for the paper: section 2 describes the study area, data preparation, and a physical-

based and random forest model. Section 3 presents the results of this research by comparing the 

effectiveness of the random model with a physical-based model, section 4 provides the 

discussion of the results, and section 5 provides the major conclusions from the current analysis. 
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2.2 DATA AND METHODS 

This section describes the methodology used for Hydrology and Hydraulic analysis in 

this research. Random Forest, HEC-HMS, and HEC-RAS are the three models used in this study. 

HEC-HMS and the Random Forest model were applied for hydrology analysis, and HEC-RAS 

was used for the hydraulic analysis. The complete workflow of the methodology used in this 

research work is shown in Figure 1. First, this study started with extracting and preprocessing the 

basin characteristics data such as Digital Elevation Model (DEM), Land Use and Land Cover 

(LULC), Soil group, and meteorological data such as daily precipitation and discharge data. The 

integrated use of Arc-Hydro, HEC-GeoHMS, and HEC-HMS was performed for hydrology 

analysis in the upstream catchment area. Similarly, Random Forest, a Machine learning 

algorithm, was used to predict the runoff for the training and testing period. After the preparation 

of the hydrology model, the comparison was performed between the Machine learning model 

(Random Forest Regression) and the Physical model (HEC-HMS) using the different statistical 

indexes. Finally, the runoff obtained from the Machine learning model was used as an input 

variable in the HEC-RAS model to calculate the water depth at the downstream location. In 

conclusion, the modeling approach determined the effectiveness of Random Forest Regression 

for hydrology and the integrated approach of Random Forest and HEC-RAS model for hydraulic 

analysis. 
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Figure 1 - Figure portraying the flowchart of hydrology simulation using Random Forest and 

HEC-HMS and hydraulic analysis using HEC-RAS. 

2.2.1 STUDY AREA 

This research used the East Branch DU PAGE watershed as a study area. Over the last 

twenty years, the study area has observed significant urbanization. The study area had a history 

of high flooding events in 1996, 2008, 2013, and most lately in 2020. In the year 2020, there was 

significant flooding due to 178mm of total precipitation over a period of five days. The study 

watershed has an area of 62.2 km2 at the USGS gauging station, which is around Downers 

Grove, Illinois. The study area has an elevation ranging from 204 m to 250 m above mean sea 

level. Geographically, northern latitudes from 41°50′ to 41°57′ and western longitudes from 
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87°59′ to 88°6′ bounds the study catchment area, as shown in Figure 2. The study area is highly 

residential, with an average impervious percentage of about 40%, the range of percentage 

imperviousness in a watershed is shown in Figure 2. The average soil permeability over the 

watershed is 62mm/hour. The catchment consists of USGS gauge station 05540160 at the 

watershed outlet. The river reach for the hydraulic station lies between the gauging stations 

05540160 to gauging station 05540228. The study reach is around 5221 m between two gauging 

stations. The proposed research area does not consist of any precipitation gauging station. The 

history of flooding events and the unavailability of observed precipitation data in this watershed 

are the two main reasons for proposing this watershed as a study area.  

 

Figure 2 - The East Branch DuPage Catchment around Downers Grove, Illinois, with the river 

system. 
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2.2.2 DATA 

Watershed characteristics datasets such as land-use and land cover, soil group, DEM, and 

meteorological model data such as rainfall and are all important data required for hydrology and 

hydraulic simulation. These datasets were used to estimate hydrology parameters and sub-basin 

characteristics and to prepare geometric data for hydrology and hydraulic analysis. The data type 

used in this research and their sources are detailed in Table 1. 

Table 1- Data Used for this research with their sources. 

Data Source 

Precipitation 

Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks-Cloud Classification System (PERSIANN-

CCS). 

Soil United States Department of Agriculture (USDA) 

Land Use Land 

Cover 

United States Geological Survey (USGS) 

Runoff Data United States Geological Survey (USGS) water data 

 

2.2.3 PREPROCESSING DATA 

This section describes the extraction of basin characteristics of the study catchment. 

2.2.3.1 DIGITAL ELEVATION MODEL 

DEM is spatial data that provides the characteristics of the watershed. 10 m * 10 m DEM 

was retrieved from a United States Department of Agriculture (USDA) Website and was clipped 

for the study catchment using Arc-Map in Arc-GIS.  
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2.2.3.2 BASIN CHARACTERISTICS 

LULC data and soil map were extracted from a USGS and USDA website, respectively. 

Both data were imported in ArcMap to clip for a study boundary and converted to the Shapefile 

from raster. Composite Curve Number values were generated considering pervious and 

impervious areas. The average curve number of the watershed was 83.4, and Curve Number 

values range from 54 to 100, corresponding to high infiltration to water bodies, respectively. The 

basin characteristics of the study area are shown in Figure 3. 

 

Figure 3 - Map depicting characteristics of study area. 

2.2.3.3 PRECIPITATION DATA 

Rainfall is essential meteorological data for the hydrology simulation. The study area 

does not consist of any observed precipitation station; therefore, in this study, precipitation data 

were obtained from a grid from PERSIANN-CCS (Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural Networks-Cloud Classification System). The Center 
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for Hydrometeorology and Remote Sensing (CHRS) develops it at the University of California, 

Irvine, and it is a real-time global high resolution (0.04° x 0.04° pixel) satellite precipitation 

product (Nguyen et al. 2019). The daily time series precipitation data was extracted from a grid 

using a python environment from 2006 to 2021. 

2.2.4 HYDROLOGIC MODELLING USING ARC-GIS AND HEC-HMS 

HEC-GeoHMS is an extension of an Arc-GIS that helps users to extract the essential data 

to develop the HEC-HMS project. The user must pick an outlet position on the river to begin the 

extraction procedure. HEC-GeoHMS utilizes terrain preprocessing tools for flow analysis. HEC-

GeoHMS can enhance the sub-basin and stream delineations, collect physical attributes of sub-

basins and rivers, predict model attributes, and create input files for HEC-HMS. Terrain 

preprocessing and model development is carried out as shown in Figure 4. 

 

Figure 4 - Pre-processing and model development: (a) DEM file; (b)Fill Sinks; (c)Flow 

Accumulation; (d)Flow Direction; (e)Stream definition and Catchment Polygon; (f)Drainage 

Point and line processing; (g) Slope; (h)Basin and River merge; (i)Lonest Flow path; (j)CN lag; 

(k)Sub-basin nodes and river links; (l)HEC-HMS input file. 
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2.2.4.1 LOSS METHOD 

The SCS-CN (Soil Conservation Service curve number) is a loss model that can compute 

the volume of the river flows. Surface runoff excess depends on precipitation, soil data, and 

LULC of a particular watershed. Equation 1 is a mathematical expression used to determine 

surface runoff. 

𝑄 =
(𝑃 − 𝐼𝑎)2

(𝑃 − 𝐼𝑎) + 𝑆)
 

(1) 

Where, Q= Runoff (inch); P= Rainfall depth (inch); Ia= Initial abstraction, and Ia=0.2S; S = 

Potential maximum retention. The potential maximum retention in inches, S, is calculated using 

Equation 2: 

𝑆 =
1000

𝐶𝑁
− 10 

(2) 

2.2.4.2 TRANSFORM METHOD 

The SCS Unit Hydrograph transforms excess precipitation into runoff. SCS proposed the 

Unit Hydrograph, which is used in the HEC-HMS model. It is a parametric model based on the 

average Unit Hydrograph, which is created from gauged precipitation and discharge data of 

various agricultural watersheds collected across the United States. It assumes that a Unit 

Hydrograph depicts the constant properties of a watershed. The lag time is the sole input variable 

for this method. It is the time distance between the center of excess rainfall and the Hydrograph 

peak, and HEC-HMS computes it for each sub-basin using Equation 3, 

𝑇𝑙𝑎𝑔 =
(𝑆 + 1)0.7𝐿0.8

1900 ∗ 𝑌0.5
 

(3) 

Where, Tlag = lag time (hrs.); L = hydraulic length of the watershed (ft); Y = slope of the 

watershed (%); S = maximum retention in the watershed (inches). 
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2.2.4.3. ROUTING METHOD 

Discharges from sub-basins were routed through the reaches to the outlet of the 

watershed using the Muskingum routing method. X and K are the two main parameters used in 

this method. Theoretically, The K parameter is the wave's time passing in a reach length. These 

parameters can be approximated using observed inflow and outflow Hydrographs, and the X 

parameter is a weight coefficient of discharge, which value fluctuates between 0 and 0.5. The 

interval between the inflow and outflow Hydrographs of an identical station can be used to 

determine parameter K. In this model, routing methods parameters were used to calibrate the 

model. 

2.2.5. HYDROLOGIC MODELING USING RANDOM FOREST 

This study investigated the capacity of a Random Forest algorithm for predicting the 

daily discharge using the meteorological and hydrology features. Nonlinear interactions between 

a dependent variable and several independent variables can be represented using regression tree 

ensembles like the Random Forest technique. Despite the popularity of the Random Forest 

algorithm in myriad environmental sciences fields, its application in the water sector has still 

remained to be explored more (Saadi et al. 2019). Random forest is the type of supervised 

machine learning algorithm that can be used for classification and prediction. Random forest 

uses the different tree predictors, and the random vector determines their values (Breiman 2001). 

Random Forest is a collection of decision trees, where each tree slightly varies from one other. 

Ensemble learning combines all the decision trees and the average values predicted by each 

decision tree, solving the regression problem. This algorithm addresses the problem of training 

data overfitting in decision trees. The Random forest has a good performance in the large dataset, 

and its features need not to be scaled (Park et al. 2019). It is advantageous for the features with 
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different scales. Random forests are appealing for both classification and regression tasks, 

computationally fast, efficient for unstable prediction, and  perform well with high-dimensional 

features (Biau and Scornet 2016; Gregorutti et al. 2017). This algorithm's key idea is that each 

tree might make a fair prediction on its part; however, overfitting seems to occur on a certain part 

of data. If numerous trees are built, they will work and overfit in various ways. The average of 

these results will assist in the reduction of overfitting while holding onto the predictive power of 

decision trees.  

2.2.5.1 MODEL DEVELOPMENT 

Many decision trees with bootstrap aggregation are used to minimize the overfitting issue 

(Hussain and Khan 2020). A Random Forest Regressor consisting of 100 decision trees, as n-

estimators, were applied to this dataset. The max depth parameter defines the maximum depth of 

the tree. Max depth of the model is fixed to be 100. Max depth by default is ‘None’ which 

signifies that the nodes are enlarged until all the leaves have fewer than min_samples_splits 

samples. Min_samples_split means the total samples needed to break internal node. Since we are 

trying to maintain the number of decision trees at only 100, the max features are stated auto, 

which means max features is equal to n features (The number of features seen during the model 

fitting). The parameter max-leaf nodes = None, refers to the unlimited number of leaf nodes, 

leaving the decision trees to grow best to fit the model. Total number of daily hydrology and 

meteorological feature samples from 2006 to 2021 were used for training and testing the 

algorithm. 80% of total datasets were used for the training, and 20% of entire datasets were used 

for the testing of the Random Forest model. 

Box plot of daily discharge was created to visualize the patterns of daily discharge as 

shown in Figure 5c. Daily runoff was checked by plotting the Autocorrelation and partial 
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Autocorrelation factors. Figure 5a and Figure 5b shows the Autocorrelation and the partial 

Autocorrelation plot of historical daily runoff observations respectively. This plot helped 

identifying a suitable lag period for flow prediction in a watershed (Hussain and Khan 2020). 

Five sets of discharge values at a lag time of 1 to 5 days were selected to predict the discharge. 

Similarly, six sets of precipitation at 1 to 5 days lag time were selected.  

 

Figure 5 - a) Autocorrelation plot of the historical runoff observation of the DuPage River; b) 

Partial autocorrelation plot of the historical runoff observation of the DuPage River; c) Box Plot 

showing the flood events of the DuPage River. 

Figure 5a represents the combination of input features for training the random forest 

regression. In addition, the cumulative precipitation for 5 days and the day in which rainfall was 

greater than 0.5 inches was considered as an additional feature for predicting the runoff at the 

outlet of the watershed. NumPy, Pandas, Matplotlib, stats model, Sklearn, and seaborn are the 

python libraries that area used during data processing, training, and visualizing. 
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The Autocorrelation function and the 95 % confidence interval are shown in Figure 5a. A strong 

correlation was found up to 20 lags. The decay of Autocorrelation shows the strength of the 

autoregressive process. Similarly, the partial Autocorrelation and 95% confidence interval were 

calculated. The partial Autocorrelation depicted a strong correlation up to a 5-day lag period. 

Therefore, a lag period of 5 days was selected for the input. 

Table 2 - The combination of input for runoff prediction using random forest regression 

 

2.2.6 HYDRAULIC MODELLING 

Hydraulic modeling using HEC-RAS uses adequate geometry and flow data input for an 

excellent hydraulic model. The 1D HEC-RAS model is commonly employed to analyze flow in 

mainstream channels and predict flood extent. Although the 1D model has limited applications, it 

is cost-effective, durable, and favored when determining flow pathways (Gharbi et al. 2016). 

When speed is of the essence and flood plain geometry data is scarce, 1D modeling is chosen 

(Pathan and Agnihotri 2021). HEC-RAS calculates the energy expression using Equation 4, 

which is based on Saint Venant's equation.  

 

𝑍2 + 𝑌2 +
𝛼2𝑉2

2

2𝑔
= 𝑍1 + 𝑌1 +

𝛼1𝑉1
2

2𝑔
+ ℎ𝑒 (4) 

Lag(days) The Structure of Input Output 

5 

Discharge of 1 day to 5 days lag period, 

Precipitation of 1 day to 5 days lag period, Sum 

of 5 days precipitation (P5 days), days since last 

precipitation greater than 0.5 mm. (p>0.5) 

One day ahead discharge 
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Where, Y1 and Y2 = water heights at cross-sections; Z1 and Z2 =elevations of stream reach; α1 

and α2 = velocity weighting coefficients; V1 and V2=average velocities; g=acceleration due to 

gravity; and he=energy head loss. 

2.2.6.1 RIVER GEOMETRY 

Hydraulic Analysis with the HEC-RAS starts with extracting the river section geometry 

data using the RASMAP, which is available in the HEC-RAS model. The process involved in the 

hydraulic analysis using HEC-RAS is illustrated in a flowchart in Figure 1. The Lidar 1m DEM 

for the hydraulic model was obtained from the USGS website. The DEM data was imported into 

the RAS Mapper tool in the HEC-RAS and was converted into Digital Terrain Model. In 

addition, the Georeferenced projection file was assigned in RASMAP for the consistent 

coordinate system. In the RASMAP, the river centerline, bank lines, flow path lines, and cross-

section lines were digitized. The Manning’s n value was assigned to each cross-section at entire 

reach. After the creation of river geometry and applying manning’s n value, the steady discharge 

was used as an input data for the steady flow simulation. The water depth achieved from the 

simulation was then compared to the water depth at gauging stations downstream of the study 

reach. Manning's n values at the main channel and over banks were adjusted for calibration of a 

model. 

2.2.7 STATISTICAL PERFORMANCE INDICATOR 

The performance of each model should be examined to determine the best models among 

different model alternatives. The five-evaluation metrics ( RMSE, RSR, NSE, PBIAS, and R2) 

recommended by (Moriasi et al. 2015) and NRMSE were used in this research to assess the 

performance of the hydrology model. The criteria used to evaluate the proposed models' 

performance is listed in Table 3. 
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Table 3 - List of statistical indexes for determining the performance of models. 

Indices Mathematical Expression Satisfactory 

Range 

Root Mean Square Error 

(RMSE) 𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑠,𝑖 − 𝑄𝑜,𝑖)
𝑁
𝑖=1

2

𝑁
 

 

Nash-Sutcliffe efficiency 

coefficient (NSE) 𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑜,𝑖 − 𝑄𝑠,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜,𝑖 − 𝑄𝑜)2𝑁
𝑖=1

] 
0.5<NSE≤1 

Coefficient of 

Determination (R2) 𝑅2 =
(∑ (𝑄𝑜,𝑖 − 𝑄0,𝑖

𝑁
𝑖=1 ) ∗ (𝑄𝑠,𝑖 − 𝑄0,𝑖))2 

∑ (𝑄𝑜,𝑖 − 𝑄0,𝑖)2 ∗𝑁
𝑖=1 ∑ (𝑄𝑠,𝑖 − 𝑄0,𝑖)2𝑁

𝑖=1

 
>0.5 

Standard Deviation Ratio 

(RSR) 
𝑅𝑆𝑅 =

𝑅𝑀𝑆𝐸

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

0<RSR<0.7 

Percentage bias (PBIAS) 

 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑜,𝑖 − 𝑄𝑠,𝑖) ∗ 100𝑁

𝑖=1

∑ 𝑄𝑜,𝑖
𝑁
𝑖=1

 
±25% 

Normalized Root Mean 

Squared Error (NRMSE) 𝑁𝑅𝑀𝑆𝐸 =

1
𝑁

∑ (𝑄𝑠,𝑖 − 𝑄𝑜,𝑖)
2𝑁

𝑖=1

Mean
 

≤30% 

 

Where, Qo,i represents the observed data, Qs,i represents the simulated data from the model,Q o,i, 

represents the mean value of total number of data’s, and n represent the total number of data 

points. 

2.3 RESULTS 

This section describes the results of the study and has four main topics. In this section, 

results of precipitation product, hydrology analysis and hydraulic analysis is presented. 

2.3.1 PRECIPITATION 

The rainfall data applied in this research was extracted from satellite-based rainfall 

products for a time period of 16 years (2006-2021). The daily rainfall data obtained for a study 

time period is shown in Figure 6a. The daily precipitation data pattern is consistent with the daily 

observed discharge data. The result shows that the time of peak rainfall data matched the peak 

discharge data. For example, in this watershed outlet, the highest peak discharge of 33.7 m3/s 

was observed on Sept 14, 2008, and similarly, extracted precipitation product produced the 
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highest precipitation of 61 mm on the same day. In addition, the validation of extracted 

precipitation data was supported by the results of the hydrology analysis, which is presented in 

the following section. 

2.3.2 HEC-HMS MODEL 

Integration approaches of the Arc-Hydro tool and Hec-GeoHMS, successfully generated 

all the sub-basin parameters needed for hydrology analysis. HEC-GeoHMS is a sophisticated 

tool that can be used to delineate natural watersheds and perform automatic basin parameter 

extraction for the HECHMS model construction. Table 4 lists the basin parameters obtained from 

HEC-GeoHMS, such as sub-basin area, slope, curve number, and basin lag. 

The calibration and validation of HEC-HMS model in this research was done by adjusting the 

Muskingum parameters. The measured discharge from the gauging station was compared to the 

yearly peak discharge produced from a simulation. Event 2006 Jan 1 to 2018 Dec 31 was 

considered for the model calibration, and Event 2019 Jan 1 to 2019 Dec 31 was used for the 

model validation. The accuracy of hydrology model using HEC-HMS was proved using 

statistical index. The discharge generated using HEC-HMS for the study period is presented in 

Figure 6b. A root means square error is one of the most used methods for evaluating the validity 

of prediction. The results of RMSE during calibration and validation were 1.45 m3/s and 2.45 

m3/s, respectively, which is considered as a good result. RSR is calculated by dividing the RMSE 

by the standard deviation of the measured data, and with values less than 0.7, is considered as a 

good result (Kumar et al. 2017). The RSR values for the HEC-HMS model were 0.16 and 0.35. 

The NSE is extensively used in performance measures in hydrology. It ranges from – 1 to 1, with 

0.5 to 1 being the best value. The NSE method is used to calculate the residual variance in 
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relation to the variance of measured data, and the NSE values were 0.97 and 0.87, respectively, 

which are near one. 

Table 4 - Geographic characteristics of the study watershed. 

Sub-Basin Basin Area (km2) Basin Slope (%) 

Curve Number 

(CN) 

Basin Lag 

(min) 

W220 4.3 2.6 85.8 150 

W210 7.0 2.8 84.7 135 

W200 3.6 3.1 83.6 133 

W190 6.2 1.9 83.9 84 

W180 5.9 3.5 83.2 90 

W170 0.3 4.5 86.7 84 

W160 3.7 2.6 82.3 81 

W150 5.5 3.5 83.7 98 

W140 7.4 4.5 83.0 86 

W130 5.3 2.2 84.2 20 

W120 13.0 3.4 84.0 76 

 

 PBIAS shows the average inclination of the calculated data. For a good model, PBIAS 

values must approach zero or be less than 25% (Abbaspour et al. 2015). Positive numbers 

suggest that the model is underestimated, whereas negative values indicate overestimating the 

model (Gupta et al. 1999). Our model overestimated the peak value by +5.3 percent for 

calibration and +9.8 percent for validation. R2 is used to determine a correlation between 

calculated and measured flow rates. R2 greater than 0.5 indicates satisfactory performance. For 
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calibration and validation, R2 values were 0.99 and 0.96, respectively. R2 value close to 1 for the 

HEC-HMS model validates the accuracy of the model. 

2.3.3 RANDOM FOREST REGRESSION 

Random Forest regression provided good insights into the prediction of daily discharge 

data. Figure 6c provides a good representation of the observed value and the predicted value 

while using Random Forest. The scatter plot in Figure 6d showed that Random Forest prediction 

was clustered near the regression line on the low and normal flow conditions. However, the 

Random Forest regression slightly overestimated high discharge value, which can also be termed 

an extreme event. Table 5 shows the evaluation matrix for the random forest regression. The 

value of RMSE, RSR, NSE, PBIAS, R2, NRMSE were 0.29 m3/s, 0.23, 0.94, -0.75%, 0.94, 0.17 

for the training period and 0.47 m3/s, 0.56, 0.69, +1.76%, 0.72, 0.260 for testing period, 

respectively as shown in Table 5. Statistical Index revealed that the Random Forest model 

performance was superior during data training. The values of the statistical index dropped 

sharply during the testing period. PBIAS values for training and testing values are near to 0%, 

representing the average inclination of predicted discharge towards the observed discharge. The 

values of R2 dropped sharply from 0.94 during training to 0.72 during the data testing. However, 

the values of a statistical index are within acceptable ranges during a testing period. Scatter plots 

analyze the prediction performance of random forest regression with the observed data. Larger 

deviation on the line was seen on higher flow values. It means the model has prediction error on 

the prediction of the peak flows. The non-peak discharge was more accurately predicted by the 

machine learning model.  

Random forest regression was used for the prediction of discharge for the given input 

precipitation. The feature selection based on the lag period of precipitation and discharge were 
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used. The validated result of HEC-HMS and random forest was compared to determine their 

ability to predict the discharge for a study time. After the comparison, we observed the 

conventional HEC-HMS needed more parameter optimization than random forest regression. 

Similarly, the aim of study was also to prove suitability of the discharge data predicted from 

Random Forest for hydraulic analysis. The scatter plot as shown in Figure 6e showed the 

observed gage height in the gauging station versus the simulated gage height from the HEC-RAS 

model. During the high flooding events, the water depth predicted by the hydraulic model using 

Random Forest generated discharge is slightly underestimated compared to the observed water 

depth. As model showed good performance on generating water depth during non-flooding 

conditions, integration approach of Random Forest and HEC-RAS could be used as an integrated 

approach to derive the useful information while planning the water resource infrastructure and 

flood control measures in the selected study area. As performance of watershed model relies on 

precision, robustness, application of the model in other site condition, the proposed approach 

could be tested and analyzed for multiple catchment location, so that the parameters could be 

fixed to increase the reliability of the result.  
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Figure 6 - a) Representation of generated precipitation product; b) Training and testing for HEC-

HMS Model; c) observed discharge and predicted discharge for random forest regression; d) 

Observed historical and Predicted runoff data, e) Observed gage height and Predicted gage 

height 
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Table 5 - Calibration and Validation summary statistics of HEC-HMS and Random Forest 

model. 

Statistical Index HEC-HMS model Random Forest 

Calibration Validation Training Testing 

RMSE (m3/s) 1.45 2.45 0.29 0.47 

RSR 0.16 0.35 0.23 0.56 

NSE 0.97 0.87 0.94 0.69 

PBIAS +5.30% +9.80% -0.75% +1.76% 

R2 0.99 0.96 0.94 0.72 

NRMSE 0.06 0.10 0.17 0.26 

 

2.3.4 HEC-RAS MODEL 

The hydraulic analysis was carried out for the East DuPage watershed's downstream 

reach. For calibration purposes, historical discharge data from flood events in 2020 and 2021 

were used, and the results are displayed in the Figure 6. The study reach consists of only one 

USGS gauging station at the most downstream location of the study reach with gauge height data 

beginning from 2020. The hydraulic model was calibrated using water depth data from various 

flooding events in 2021 and 2022. Figure 6e showed the comparison of simulated and observed 

data at most downstream stations of a study reach. The manning's n value was adjusted to 

calibrate the hydraulic model. The water depth produced from a simulation was similar to the 

observed water depth at the gauging station, as shown in Figure 6e; this demonstrates the model's 

consistency and allows it to be used for further investigation. At the upstream cross-section of 

reach, daily discharge data from Random Forest was used to calculate the water depth at the 

downstream reach. The scatter plot in Figure 6e shows that the discharge calculated using 

Random Forest regression can be utilized to calculate the flood depth in a river stream. 

Compared to the observed water depth at the gauging station, the model underestimates the 

simulated water depth generated from the study. 
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Table 6 - Observed and simulated water depth. 

Event Discharge (m3/s) 

Observed Water 

depth (m) 

Simulated 

Water depth 

(m) 

Difference 

(m) 

2020 Jan 11 8.78 2.79 2.68 0.11 

2020 Mar 30 3.11 2.09 1.98 0.11 

2020 Mar 29 5.07 2.33 2.58 -0.25 

2020 Apr 30 16.03 3.40 3.02 0.38 

2020 May 18 26.42 4.41 3.85 0.56 

2020 Oct 23 6.57 2.45 2.91 -0.46 

2020 Dec 12 8.04 2.52 2.61 -0.09 

2021 Mar 19 2.83 1.96 2.03 -0.07 

2021 Jun 26 10.96 2.90 3.27 -0.37 

2021 Aug 27 2.21 1.81 1.89 -0.08 

2021 Oct 26 8.38 2.50 2.48 0.02 

 

2.4 DISCUSSION 

The outcome of the hydrology simulation demonstrated strong support for the 

effectiveness of the satellite precipitation product for the hydrology simulation in an ungauged 

catchment. Both HEC-HMS and Random Forest models accurately recreated the discharge 

characteristics such as flood peak and timing during the study period. These findings are 

consistent with previous studies, which showed that PERSIANN-CCS precipitation products 

could effectively simulate hydrology in ungauged watersheds (Hong et al. 2007; Joshi et al. 
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2019a). The statistical index, listed in Table 5 from model calibration and validation, suggested 

that Random Forest can be effectively applied for estimating daily discharge at watershed 

outlets. The good performance of Random Forest for the hydrology analysis proved its 

appropriateness for rainfall-runoff simulation in data-scarce regions. The result of Random 

Forest agrees with the previous study's findings of the good performance as an alternative 

predicting method in the hydrology domain (Desai and Ouarda 2021). The statistical index in 

Table 5 proved the suitability of both Random Forest and HEC-HMS for rainfall-runoff 

simulation. Results illustrated that Random Forest slightly underestimated the peak discharge 

during the high flooding events; however, during the non-flooding period, the discharge 

predicted by Random Forest was better than the HEC-HMS model. Figure 6e provided good 

support for the effectiveness of Random Forest generated discharge for hydraulic simulation. 

The result depicted that the simulated water depth by HEC-RAS at the most downstream cross-

section was slightly underestimated compared to the observed water depth at the gauging station. 

This result may be because of using the slightly underestimated discharge obtained from the 

Random Forest model. The overall result of this research work supports the integration of 

Machine Learning and a physical-based model for rainfall-runoff and flood depth prediction in 

the scarce data region. 

2.5 CONCLUSION 

This study evaluates the feasibility of HEC-HMS and Random Forest for rainfall-runoff 

simulation and an integrated approach of the Machine Learning and HEC-RAS for hydraulic 

analysis. HEC-HMS requires large number of input variables, which may not be always 

available in a data scarce region, in this scenario, Random Forest model can be used for the 

prediction of discharge in the watershed. In addition, Random Forest model is simple to build 
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and takes less time. In this study, PERSIANN-CCS NetCDF file was used to generate time series 

precipitation data. The result shows good support on the usage of PERSIANN-CCS daily 

precipitation data for the rainfall-runoff simulation. Based on the models' reasonably strong 

performance, precipitation data, LULC, DEM, and SSURGO soil input data obtained are 

sufficiently dependable to simulate discharge. Because the data sources employed in this study 

yield reasonably reliable results, they are recommended for hydrology investigations. The basin's 

continuous simulation of rainfall-runoff processes using physical and machine learning has 

yielded good results. Peak flows were under-predicted in the Random Forest and slightly over 

predicted in the HEC-HMS model. An Integrated Model of HEC-RAS and Random Forest 

regression showed a good result in predicting runoff flood depth at downstream of a watershed. 

Given these findings, it is possible to say that the Random Forest model could aid in rainfall-

runoff simulation as a complement to the physical model. This discharge could be used in 

hydraulic modeling for flood depth and flood extent analysis, which could be helpful to 

researchers for further research. The model's accuracy for predicting the flow can be increased 

by removing the outliers; high flood values are considered here to compensate for the prediction 

of the high flood values from the random forest regression. Future Researchers can work in the 

following areas. 

In this study, we used the PERSIANN precipitation product, and the future work may be 

more accurate if there is any gauging precipitation station. Furthermore, Researchers can also use 

other precipitation products such as Next Generation Weather Data (NEXRAD) and Climate 

Hazards Group Infrared Precipitation (CHIRPS).  

In this study, precipitation data is only used as an input variable for the Random Forest 

model; other variables such as temperature, infiltration, evaporation, and radiation can be used in 
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future work. In addition, feature selection of input variables can be made for the most accurate 

selection. 

The other machine learning and data-driven models, such as support vector regression 

(SVR), long short-term memory (LSTM), and artificial neural network (ANN), can be used as 

the other prediction model. The future research direction can be guided for the best selection 

from the multiple machine learning models based on accuracy, robustness, and reliability. 

Although the study area is a small watershed in DuPage County, future research could focus on a 

more dynamic, heterogeneous, and meteorologically unique basin. 
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CHAPTER 3 

EVALUATING THE PERFORMANCE OF PCSWMM USING NEXRAD DATA FOR 

URBANIZED WATERSHEDS 

3.1 INTRODUCTION 

Floods are among the most destructive events worldwide, and its frequency and 

magnitude have been increasing significantly in the past few decades (Aryal et al. 2022; Chen et 

al. 2018; Merz et al. 2010; Tamaddun et al. 2016; Thakur et al. 2017). The worldwide flood 

casualties rose from an average of $7 billion USD every year in the 1980s to roughly $24 billion 

USD each year in the 2000s (Kundzewicz et al. 2014), and this statistic is expected to rise to $52 

billion USD by 2050 (Hallegatte et al. 2013). Urban floods can damage urban infrastructure, 

interrupt city services, and have significant adverse socioeconomic effects (Zhou et al. 2022a). 

Additionally, it is predicted that by 2030, there will be 5 billion urban inhabitants worldwide, and 

a single flood might significantly impact millions of people's lives (Gaines 2016). In this context, 

accurate peak discharge and discharge hydrograph predictions during catastrophic flooding 

events are essential for flood control decision-making(Kalra et al. 2021b; a). The threat of high-

intensity rainfall events can be reduced by deploying flood control systems in flood-prone areas 

with correct evaluation of the rainfall-runoff simulation through hydrological 

modelling(Bhandari et al. 2017; Ghimire et al. 2016; Nyaupane et al. 2018; Pokhrel et al. 2020; 

Thakali et al. 2017). 

Rainfall data is the most critical input parameter for development of hydrologic models 

which significantly impacts the model's accuracy (Price et al. 2014). The accuracy of time-

variable rainfall data is paramount for successfully verifying the hydrologic models 

(Pechlivanidis et al. 2016). In addition, accurate information on rainfall's spatial and temporal 
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variability is essential in forecasting extreme climatology conditions, hydrological simulation, 

flood and drought monitoring, ground water monitoring and water resource management 

(Cristiano et al. 2017; Joshi and Kalra 2021). Insufficient and inappropriate rainfall data causes 

verification errors in the hydrologic models, which lowers the model's accuracy and 

dependability for simulating the actual watershed (Vallabhaneni et al. 2004) .  

Point gauge observations have historically been the primary source of the necessary 

rainfall data for hydrologic models. Point rain gauges detect rainfall at a specific location of the 

rain gauge. However, hydrological models require information on the area-averaged rainfall for 

their accuracy. Therefore, rainfall estimations from gauges become insufficient due to the poor 

depiction of areal precipitation by rainfall gauging stations, especially in scenarios with sparse 

gauge network designs (Porcù et al. 2014). Researchers have developed a number of 

approximation strategies that estimate the areal average rainfall data based on mathematical and 

geometrical calculations. Thiessen polygon, kriging, and inverse distance weighting methods are 

some common approaches that develop the areal average rainfall data by interpolating rainfall 

data from gauging stations. However, the results obtained from such interpolation may not 

always be correct due to rainfall variability within a small area, as well as sparse or nonexistent 

gauging stations in the watershed(Haberlandt 2007). This scenario makes it difficult for system 

managers and researchers to accurately derive the hydrological response of watershed during 

extreme rainfall period and application of flood protection system, causing a significant 

socioeconomic impact. 

In this context, radar-based rainfall data has been developed in recent years as an 

alternative to the gauging station’s rainfall data that provides information on average areal 

rainfall. Radar rainfall data resolves the natural variability of rainfall over temporal and spatial 
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scales that are pertinent to hydrologic applications which is why it is represented as a major 

advance over gauging rainfall data despite its indirect method of detecting rainfall (Hamedi and 

Fuentes 2015). Many previous researchers have used radar rainfall data in their watershed to 

determine its effectiveness for the development of outlet hydrograph. Some studies concentrate 

on accurately simulating total precipitation volumes, while others focus on the impact of 

rainfall's spatial and temporal variability on the accuracy of the hydrographs(Chaubey et al. 

1999; Krajewski et al. 1991). The results are inconsistent, mixed, and sometimes contradictory 

based on the numerous studies conducted using radar data. Some studies found that radar-based 

rainfall data can produce significant errors in developing flood hydrographs compared to the 

rainfall data obtained from gauging stations (Johnson et al. 1999; Cole and Moore 2008).  

However, several researchers contrasted this by stating that radar data can predict floods as 

correctly as rain gauge data (Bedient et al. 2000; Lopez et al. 2005; Pessoa et al. 1993). The past 

literature suggests that although hydrological models have been used in numerous research 

studies to analyze the geographical and point differences between rain gauge and radar rainfall 

data, definitive findings have yet to be reached. Several variables influence the outcomes, 

including model complexity, various catchment areas, runoff-generating mechanisms, and 

variations in radar and rain gauge rainfall datasets (Neary et al. 2004). As a result, it could not 

draw any broad judgments concerning the validity of radar rainfall data for hydrological 

modeling. 

Therefore, this study determines the performance of radar-based rainfall data for the 

rainfall runoff simulation in the study watershed. This study used NEXRAD III rainfall data as it 

is more widely available to the general public and significantly less expensive than using a dense 

network of gauge stations to achieve the same accuracy (Kalin and Hantush 2006). Similarly, in 
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addition to precise rainfall observation, reliable hydrologic models are also required for the most 

accurate estimation of runoff hydrograph at watershed outlets during rainfall events. Several 

agencies have updated their hydrologic models so that radar data can be used to benefit from the 

increasingly accessible radar data. The Hydrologic Engineering Center-Hydrologic Modeling 

System (HEC-HMS), Soil and Water Assessment Tool (SWAT) and Personal Computer Storm 

Water Management (PCSWMM) are some of the commonly used software for the rainfall-runoff 

simulation. Previous research has proved the effectiveness of integrating radar and satellite 

rainfall with HEC-HMS model for the rainfall runoff simulation (Ahmed et al. 2022; Bhusal et 

al. 2022; Hamedi and Fuentes 2015). Similarly, Sexton et al. (2010); Tuppad et al. (2010); Price 

et al. (2014) used the integration of SWAT and radar rainfall data for the rainfall-runoff analysis.  

However, the integration of PCSWMM and radar data is rarely applied for the rainfall runoff 

simulation. The latest version of PCSWMM supports using radar rainfall data for the real-time 

application of historical rainfall events and future climate change analysis. The PCSWMM 

provides a separate project tool known as Radar Acquisition and Processing (RAP) project, from 

where the user can directly generate the time series rainfall data from radar Network Common 

Data Form (NETCDF) file for different sub-catchments. Therefore this research took the first 

step to integrate the PCSWMM model with NEXRAD radar by involving the RAP project tool in 

the PCSWMM for the rainfall-runoff simulation in different scales of watersheds 

This article examines the potential benefits of employing radar-based rainfall data to 

enhance rainfall-runoff simulation in two watersheds. The study compares two rainfall inputs—

NEXRAD III radar products and gauge observations—with hydrologic simulations employing 

PCSWMM. The structure of this article is as follows. The next section presents the hydrological, 

meteorological, and geographical data used in this study with an approach for creating a 
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hydrological model and extracting radar rainfall data. In the third section, the results of the 

hydrologic simulations are reported, and statistical methods are applied to compare the model 

performance with the radar data to the gauge rainfall data. The research concludes with 

conclusions and suggestions for enhancing rainfall-runoff simulation. 

3.2 METHODOLOGY 

This section introduces the proposed study watersheds and provides information on the 

data used in developing the hydrological models. In addition, this section describes the 

methodological approach of extracting radar rainfall data and developing PCSWMM 

hydrological models to study watersheds. 

3.2.1 SITE DESCRIPTION 

This study proposed two watersheds of different spatial scales to evaluate the 

performance of radar rainfall data. This study selected Ellerbe Creek and River Des Peres 

watersheds as study areas which are shown in Figure 7. Ellerbe creek is located in Durham, 

North Carolina, United States (US), with a drainage area of 57 km2 and a highly urbanized area 

with a percentage imperviousness of about 40%. The land use of Ellerbe creek is comprised of 

74.6 % residential area, 1 % open water, 15.4 % forest, and 9 % agricultural area. The elevation 

of Ellerbe creek ranges from 73 m to 173 m above mean sea level. The latitude of Ellerbe creek 

ranges from 35°59'0" to 36°4'0” in the north, and the longitude ranges from 78° 50' 0" to 78° 58' 

0" in the west. Ellerbe creek has one rainfall gauging station at latitude 36°01'43" and longitude 

78°54'09".  

Similarly, River Des Peres is located in St. Louis, Missouri, US, with a drainage area of 

150 km2 and drains into the Missouri River at St. Louis. The watershed is more urbanized than 

Ellerbe creek, with a percentage imperviousness of about 55%. The land use of River Des Peres 



38 

 

watershed is comprised of 95 % residential area, 1 % open water, 2 % forest, and 2% agricultural 

area. The elevation of the watershed ranges from 120 m to 225 m above mean sea level. The 

latitude of River Des Peres ranges from 38°32'0" to 38°40'0" in the north, and the longitude 

ranges from 90° 16' 0" to 90° 28' 0" in the west. River Des Peres has no rainfall gauging station 

within the watershed. 

 

Figure 7 - The figure depicting the characteristics of study watersheds and their location 

3.2.2 DATA 

Topographical datasets, meteorological data, and hydrological data are all important data 

required for hydrological analysis of the watershed. Digital Elevation Model (DEM), Land Use 

and Land Cover data (LULC), and Soil Group Data are important topographical datasets for 

developing accurate hydrological analysis. All the topographical datasets are extracted from 

publicly available online platforms and preprocessed in ArcGIS 10.8 before it is imported to 

PCSWMM models. DEM data was extracted from the United States Department of Agriculture- 



39 

 

National Resources Conservation Service (USDA-NRCS) websites 

(https://datagateway.nrcs.usda.gov/). One meter DEM data was extracted from USDA-NRSC 

websites based on the boundary of study watersheds. Similarly, Soil Group dataset was also 

obtained from USDA-NRCS website. LULC dataset was extracted from Multi-Resolution Land 

Characteristics (MRLC) Consortium website (https://www.mrlc.gov/).  

3.2.3 NEXRAD RADAR DATA 

This study applied the NEXRAD III radar data to generate the rainfall data for the study 

watershed. NEXRAD data is developed by the joint contribution of the Federal Aviation 

Administration, the U.S. Air Force, and the NOAA National Weather Service. NEXRAD has 

160 radars, also known as Weather Surveillance Radar-1988 Doppler-National Weather Service, 

throughout the United States, and it was first started in 1991(Fulton et al. 1998). NEXRAD III 

radar data are refined using NEXRAD II, and rainfall data are approximated from reflectivity, 

also known as (Z-R) relation. These radars have improved hydrologic forecast operations and 

services and the NWS forecast and warning program by enhancing the detection of severe air 

velocities, storms, and tornadoes (Fulton et al. 1998). The NEXRAD network surrounds nearly 

all the continental United States' radar space. Using doppler radars to detect atmospheric 

precipitation and winds, scientists can supervise and forecast weather phenomena like rain, ice 

pellets, snow, hail, tornadoes, and some non-weather objects like birds and insects (Fulton et al. 

1998). The raw reflectivity data from the WSR-88D needs to go through three stages of 

hydrometeorological processing before being converted to rainfall depth. 

3.2.4 HYDROLOGICAL MODELLING USING PCSWMM 

The PCSWMM, a commercial version of SWMM, is a dynamic rainfall-runoff routing 

model used for a single and long-term event simulation of water quantity and quality for urban 
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and rural watersheds (Rossman 2017). This study integrates the ArcGIS, Hydrologic Engineering 

Center - River Analysis System (HEC-RAS), and PCSWMM to delineate the watersheds of the 

proposed study areas. In the first step, the topographical datasets are processed in ArcGIS and 

imported to the PCSWMM. Similarly, RASMAP in HEC-RAS was used to extract the geometric 

features of the rivers. The geometric features of the river developed in the HEC-RAS were 

imported as junctions, conduits, and transects in the PCSWMM. After the topographic data and 

geometric features were imported into PCSWMM, the watershed was delineated in which the 

proposed watersheds were divided into different sub-catchments. The Ellerbe Creek and River 

Des Peres watersheds were divided into 10 and 16 sub-catchments, respectively, which is shown 

in Figure 8.  

 

Figure 8 - Watersheds discretization for modelling 

 The SCS-CN was applied for infiltration from pervious regions, and the dynamic wave 

was employed for runoff routing.  Area, width, slope, and curve number are essential attributes 



41 

 

of sub-catchments in the PCSWMM model. Area, width, and slope were automatically generated 

from DEM data while delineating watersheds in a PCSWMM model. The curve number grid was 

prepared in ArcGIS by integrating LULC and soil group data and populated in each sub-

catchment. Manning’s roughness value of each transect was tabulated based on the LULC map 

of the study watersheds. The default value was used for all the remaining parameters for the sub-

catchments that were excluded from the study. 

3.2.5 RADAR DATA PROCESSING USING RAP PROJECT IN PCSWMM 

The latest version of PCSWMM supports using radar rainfall data for the real-time 

application of historical rainfall events and future climate change analysis. This study uses the 

RAP processing modules of the PCSWMM for extracting the rainfall data from the radar file. In 

the first step, the weather radar (Level III) data was downloaded from the NOAA website. 

NEXRAD III data consists of 1-hr accumulated rainfall data over a grid 4 × 4 km2, also known 

as Hydrologic Rainfall Analysis Product. Since Ellerbe creek and River Des Peres are in 

different locations in the United States, so the radar was downloaded from two different NOAA 

stations. NEXRAD: KRAX and NEXRAD: KLSX were used for downloading the radar data for 

Ellerbe creek and River Des Peres, respectively. The location of KRAX radar station is at 

Latitude 35°9'56" and Longitude 78°29'23". Similarly, the location of KLSX radar station is at 

Latitude 38°41'56" and Longitude 90°40'58". The downloaded Radar data was imported in the 

RAP modules of the PCSWMM. The RAP project's radar scans are divided into layers, each of 

which contains reflectivity and rainfall values related to each scan cell. Once the radar files were 

imported and processed through the RAP module, the radar cell's value was used to create a time 

series rainfall value for each sub catchment. 
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3.2.6 RAINFALL EVENT SELECTION 

This study selected four rainfall events for Ellerbe Creek and River Des Peres watersheds 

to compare the simulated hydrograph with the observed hydrograph. The rainfall events that 

contribute to the flooding in the watershed were selected as the study events for both. In addition, 

the availability of the record of the discharge hydrograph at the USGS gauging station was 

considered for the selection of the rainfall events. The snowfall events were discarded to bypass 

the difficulty of calculating the watershed's melting snow and areal snow distribution. Table 7 

provides the list of the selected rainfall events for both watersheds. 

Table 7 - Selection of Rainfall events 

Rainfall Event Ellerbe Watershed River Des Peres Watershed 

Event 1 October 11, 2018 September 27, 2020 

Event 2 August 23, 2019 September 21, 2021 

Event 3 October 25, 2021 July 4, 2022 

Event 4 November 24, 2022 November 6, 2022 

 

3.2.7. MODEL PERFORMANCE EVALUATION 

This study evaluates the performance of radar data by comparing the radar-generated 

discharge hydrograph with the observed hydrograph at the watershed outlet. The assessment of 

the performance of radar rainfall data requires the use of graphical and statistical methods. (Cole 

and Moore 2008; Johnson et al. 1999). Root mean square error (RMSE), Nash-Sutcliffe 

efficiency coefficient (NSE), and coefficient of determination (R2) were applied in this study to 

evaluate the performance of any hydrological analysis, which are listed in Table 8.  
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Table 8 - Indices applied for evaluation criteria 

Mathematical Expression Acceptable Range 

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑦,𝑖 − 𝑄𝑥,𝑖)

𝑁
𝑖=1

2

𝑁
  

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑥,𝑖 − 𝑄𝑦,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑥,𝑖 − 𝑄𝑥)2𝑁
𝑖=1

] 
0.5<NSE≤1 

𝑅2 =
(∑ (𝑄𝑥,𝑖 − 𝑄𝑥,𝑖

𝑁
𝑖=1 ) ∗ (𝑄𝑦,𝑖 − 𝑄𝑥,𝑖))2 

∑ (𝑄𝑥,𝑖 − 𝑄𝑥,𝑖)2 ∗𝑁
𝑖=1 ∑ (𝑄𝑦,𝑖 − 𝑄𝑥,𝑖)2𝑁

𝑖=1

 
>0.5 

 

where 𝑄𝑥,𝑖 represent the observed data, 𝑄𝑦,𝑖 represents the simulated data, 𝑄x,𝑖 represents the 

average value of the total number of observed data,  𝑁 denotes the total amount of data, and 

𝑆𝐷 represents the standard deviation. 

3.3 RESULTS AND DISCUSSION 

This section presents the results obtained in this research. In the first part, performance of 

integrating PCSWMM and NEXRAD data for the Ellerbe creek watershed is presented. In the 

successive section, the performance of NEXRAD data is presented for River Des Peres 

watershed.  

3.3.1 ELLERBE CREEK WATERSHED 

3.3.1.1 NEXRAD RAINFALL ESTIMATES 

A comparison of the two rainfall types was performed to understand better how the input 

rainfall data can affect model outcomes during hydrologic analysis. The rainfall data obtained 

from the USGS gauging stations (observed data) were compared with the rainfall data generated 

from the NEXRAD radar using RAP tool in the PCSWMM model. Table 9 listed the comparison 

of NEXRAD-generated rainfall data with observed rainfall data from the USGS gauging station. 
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The results revealed that the rainfall data extracted from NEXRAD was underestimated for all 

rainfall events compared to the observed rainfall data. The total rainfall amount extracted from 

NEXRAD was slightly underestimated for Events 1 and 2. However, the total rainfall amount 

generated from NEXRAD is significantly lower than the observed data from gauging stations for 

Event 3 and Event 4. These results reveal that the NEXRAD data is more reliable for high-

intensity rainfall events than the low-intensity rainfall events. 

Table 9 - Comparison of observed and NEXRAD generated rainfall data 

Event 

Total Rainfall Amount Percentage 

Differences (mm) Observed Rainfall (mm) NEXRAD Rainfall (mm) 

Event 1 64.5 61.6 4.5 % 

Event 2 77.4 70.6 8.7 % 

Event 3 44.1 28.9 34.0 % 

Event 4 29.2 17.2 41.0 % 

 

Similarly, Figure 9 shows the regression analysis between observed rainfall data and 

NEXRAD estimated rainfall data. R2 between the observed and NEXRAD-generated rainfall 

data for Events 1,2,3, and 4 was 0.91, 0.76, 0.95, and 0.86, respectively. The R2 value for all the 

rainfall events ranges from 0.76 to 0.95 and falls in a satisfactory range. These results revealed 

that NEXRAD data could accurately predict the temporal variability of rainfall data for all the 

events. In addition, the scatter plot for Events 1, 2, and 3 also demonstrated that NEXRAD could 

overestimate a small gauge rainfall value and underestimate for large gauge rainfall value. This 
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outcome is consistent with earlier study that assessed the reliability of NEXRAD 

developed rainfall data (Skinner et al. 2009). 

  

(a) (b) 

  

(c) (d) 

Figure 9 - Regression analysis between gauge recorded and NEXRAD estimated rainfall data, (a) 

Event 1, (b) Event 2, (c) Event 3, (d) Event 4 

3.3.1.2 STREAMFLOW ANALYSIS 

Stream flow analysis of the Ellerbe Creek watershed was performed in two locations of 

the watershed. The stream flow analysis was performed at the junction near the USGS rainfall 

gauging station and the watershed outlet. Figure 10 shows the discharge hydrograph generated 

from the gauging station and NEXRAD rainfall data at node 4. The results showed that the 

performance of both rainfall data obtained from the gauging station and NEXRAD was almost 
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similar in generating the discharge hydrograph, except in Event 4. For the Event 4 analysis, the 

discharge hydrograph developed by the rainfall gauging station was excellent, while comparing 

it with the observed hydrograph, with the NSE and R2 of 0.92 and 0.93 (Table 10).   However, 

for the same rainfall events, NEXRAD estimated rainfall data developed a significantly poor 

discharge hydrograph with the NSE and R2 of 0.42 and 0.52, respectively. The average statistical 

index revealed that discharge was more accurately estimated by applying the rainfall data 

obtained from the gauging station. The average RMSE, NSE, and R2 were 2.39 m3/s, 0.66, and 

0.81 for the NEXRAD-generated discharge hydrograph and 2.29 m3/s, 0.73, and 0.89 for the 

gauging station-generated discharge hydrograph.  

Table 10 - Statistical evaluation of gauge and radar generated discharge hydrograph at node 4. 

Event 

Radar Gauge 

RMSE 

(m3/s) 
NSE R2 RMSE NSE R2 

Event 1 1.61 0.89 0.93 3.20 0.62 0.92 

Event 2 2.99 0.54 0.93 2.59 0.62 0.92 

Event 3 2.31 0.78 0.89 2.38 0.77 0.81 

Event 4 2.65 0.42 0.52 1.01 0.92 0.93 

Average 2.39 0.66 0.81 2.29 0.73 0.89 
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(a) (b) 

  

(c) (d) 

 

Figure 10 - Graphical representation of observed discharge, radar and gauge generated discharge 

at node 4, (a) Event 1, (b) Event 2, (c) Event 3, (d) Event 4 

Similarly, Figure 11 shows the PCSWMM performance for stream flow analysis at the 

Ellerbe Creek watershed outlet. The results demonstrated that the rainfall data from the gauging 

station overestimated the discharge hydrograph at the watershed outlet. For Event 1, Event 3, and 

Event 4, the gauging station rainfall data resulted in a significantly higher peak discharge while 

comparing it with the observed discharge at the gauging station. The performance of the rainfall 

gauging station is significantly poor during Event 4, where the peak discharge simulated using 

gauge rainfall data is more than double the peak discharge of observed discharge data. In 
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addition, the statistical index value was significantly poor during the Event 4 analysis (Table 11). 

The NSE and R2 were -0.94 and 0.48, respectively, which fell in the unacceptable ranges for the 

hydrologic analysis. Similarly, the average of RMSE, NSE, and R2 was 7.59 m3/s, 0.20, and 

0.80. The average R2 value of 0.80 represents that, although gauging stations' rainfall data 

overestimated the peak discharge, it accurately predicted the nature or pattern of the observed 

discharge hydrograph at the watershed’s outlet. 

 Similarly, the NEXRAD generated discharge hydrograph was found consistent with 

observed hydrograph in terms of pattern and peak discharge at watershed outlet. The NEXRAD 

rainfall data overestimated the peak discharge for Event 2, however, the statistical indices values 

still fall under the acceptable ranges. Although for Events 1, Event 3 and Event 4, NEXRAD 

slightly underestimated the peak discharge, the statistical indices value obtained are excellent 

with highest NSE and R2 values of both 0.92.  The average value of RMSE, NSE and R2 was 

5.63 m3/s, 0.71 and 0.82, all within the acceptable ranges.  
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(a) (b) 

  

(c) (d) 

Figure 11 - Graphical representation of observed discharge, radar and gauge generated discharge 

at Ellerbe creek watershed outlet, (a) Event 1, (b) Event 2, (c) Event 3, (d) Event 4 

Table 11 - Statistical evaluation of gauge and radar generated discharge hydrograph at Ellerbe 

creek watershed outlet 

Event 

Radar Gauge 

RMSE 

(m3/s) 
NSE R2 RMSE NSE R2 

Event 1 5.12 0.92 0.92 9.09 0.74 0.93 

Event 2 11.09 0.51 0.89 5.53 0.84 0.94 

Event 3 3.34 0.86 0.87 9.11 0.22 0.86 

Event 4 2.97 0.57 0.59 6.64 -0.94 0.48 

Average 5.63 0.71 0.82 7.59 0.21 0.80 
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 The overall results demonstrate that in almost all the investigation cases for the Ellerbe 

Creek watershed, integration of the radar data with the PCSWMM model showed a good 

performance statistically and graphically in generating the discharge hydrograph similar to the 

USGS observed hydrograph. This is because of the ability of NEXRAD radar to capture the 

spatial variability of rainfall amounts throughout the watershed. However, the results of 

integrating the gauging station’s rainfall and PCSWMM were mixed. The application of gauging 

station rainfall data was effective at generating the discharge hydrograph at node 4 and 

ineffective at generating the hydrograph at the watershed’s outlet. There are two possible reasons 

for the mixed performance of rainfall data from the gauging stations. First, when the 

hydrological analysis was performed at Node 4, the contributing upstream drainage area to the 

node 4 was only 22 km2 and the distance between the rain gauge station and the farthest 

boundary of the watershed was only 2.5 km. The rainfall gauging station effectively captured the 

spatial variability of rainfall amount within the 2.5 km vicinity of the gauging station. However, 

when the analysis was performed at the Ellerbe Creek watershed outlet with a contributing 

drainage area of about 57 km2, the distance between the rain gauge station and the farthest 

location of the watershed was almost 6 km. The rainfall gauging station was found ineffective in 

capturing the spatial variability of rainfall amount at a distance 6 km farther from its location. 

Second, the effectiveness of rainfall gauging station also depends upon the wind direction and 

velocity of storm events (Tsanis et al. 2002; Sexton et al. 2010) . For the state of North Carolina, 

the storms generally travel from east to west direction. Therefore, rainfall captured by gauging 

station better approximates rainfall patterns in the west direction of the gauging station. 
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3.3.2 RIVER DES PERES WATERSHED 

The performance evaluation of integrating the PCSWMM model and NEXRAD radar 

data was also performed in a River Des Peres watershed, where the contributing drainage area is 

about 150 km2. The River Des Peres watershed does not have any rainfall gauging stations 

within the watershed; therefore, the performance evaluation was done with the observed 

discharge at the watershed outlet. Figure 12 shows the graphical representation of observed and 

simulated discharge at the watershed outlet. NEXRAD radar predicted discharge hydrographs 

were similar in pattern to the observed discharge hydrograph. The NEXRAD radar data slightly 

underestimated the peak discharge for Event 3 and Event 4 and slightly overestimated the peak 

discharge for Event 1 and Event 2. The average observed and radar-predicted peak discharge for 

the four events was 102.92 m3/s and 75.07 m3/s, which is listed in Table 12. Similarly, the 

average RMSE, NSE, and R2 were 11.35 m3/s, 0.66, and 0.87, respectively, within the acceptable 

ranges. The results demonstrated that NEXRAD radar could capture the spatial and temporal 

variability of total rainfall amount throughout the watershed. 

Table 12 - Table 6 Statistical evaluation of radar generated discharge hydrograph at node River 

Des Peres watershed outlet 

 

 

Event 
RMSE  

(m3/s) 
NSE R2 

Radar Generated 

Peak Discharge 

Observed Peak 

Discharge 

% Peak 

Difference 

Event 1 2.40 0.55 0.87 13.81 11.76 17.49 % 

Event 2 25.45 0.62 0.92 172.16 143.48 19.99 % 

Event 3 3.40 0.88 0.93 49.37 49.84 0.93 % 

Event 4 14.14 0.60 0.67 87.24 95.2 8.35 % 

Average 11.35 0.66 0.85 102.92 75.07 11.69% 
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(a) (b) 

  
(c) (d) 

Figure 12 - Graphical representation of observed, and radar generated discharge at River Des 

Peres watershed outlet, (a) Event 1, (b) Event 2, (c) Event 3, (d) Event 4 

3.4. CONCLUSION 

This research was the first to integrate the PCSWMM model with NEXRAD radar by 

involving the RAP project tool in the PCSWMM for the rainfall-runoff simulation in different 

scales of watersheds. The premise of the proposed investigation was that incorporating radar data 

in the PCSWMM model may potentially enhance hydrologic modeling. This study chooses two 

watersheds (i.e., Ellerbe creek and River Des Peres watersheds) of different locations, drainage 

areas, and characteristics to test the proposed investigation.  

           Ellerbe Creek watershed consists of one rainfall gauging station in the most upstream 

region of the watershed. Therefore, in the first phase of this research, the rainfall data obtained 

from the USGS gauging stations were compared with the rainfall data generated from the 15-



53 

 

minute NEXRAD radar using RAP tools in the PCSWMM model. Although the NEXRAD 

slightly underestimated for large gauge rainfall value and overestimated the small gauge rainfall 

value, the overall performance of NEXRAD radar on estimating the rainfall amount fell under 

the acceptable ranges with the average R2 value of 0.87. 

           In the second phase of this study, the NEXRAD generated and USGS gauging rainfall 

data were applied in the PCSWMM model for the Ellerbe Creek watershed hydrological 

analysis. Two locations (i.e., adjacent to the rainfall gauging station and watershed outlet) were 

considered for investing the performance of NEXRAD and the gauging station’s rainfall data for 

the hydrologic analysis. The results showed a better efficiency of gauging station rainfall data 

when the analysis was performed at node 4 (near the rainfall gauging stations). However, the 

performance of rainfall data from the gauging station was poor in depicting a discharge 

hydrograph at the watershed outlet; more specifically, the performance was unacceptable for 

some rainfall events. It may be because the single or sparse rain gauging stations in the more 

significant watershed cannot detect the spatial variability of rainfall events throughout the 

watershed. Similarly, the integration of NEXRAD data and the PCSWMM model showed an 

acceptable performance at both investigating locations of the Ellerbe Creek watershed for 

rainfall-runoff simulations of all the proposed events. The average value of RMSE, NSE, and R2 

was 5.63 m3/s, 0.70, and 0.82 at the Ellerbe Creek watershed outlet while applying the NEXRAD 

radar data; in contrast, they were 7.59 m3/s, 0.21 and 0.80 for applying rainfall data from gauging 

stations. 

           In the final steps of this investigation, the performance of NEXRAD data was evaluated in 

a River Des Peres watershed, which has a significantly larger drainage area (150 Km2) compared 

to the Ellerbe Creek watershed. The River Des Peres watershed does not have any rainfall 
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gauging stations; therefore, the performance of NEXRAD radar data was only evaluated by 

comparing the discharge hydrograph obtained by integrating NEXRAD radar data and 

PCSWMM model with observed discharge data at the watershed outlet. The RMSE, NSE, and 

R2 were 11.35 m3/s, 0.66, and 0.85, all within the acceptable ranges.   

           In conclusion, the results supported the investigation premises. This study demonstrated 

that using rainfall data from NEXRAD can be a feasible replacement for using rainfall data from 

surface rain gauges in the larger watersheds where rainfall gauging stations are typically scarce 

or nonexistent. Significant rainfall that caused observed flood peaks in both watersheds was 

detected using radar-derived rainfall data. In addition, the hydrograph and streamflow peak 

predictions made by radar-driven PCSWMM models for the larger watersheds were correct for 

most of the events. 

           This study also recommends studying the integration of NEXRAD radar data and the 

PCSWMM model for event-based and continuous simulation in the future. Future researchers 

can also integrate other radar and satellite-based grid rainfall data, which is supported by the 

PCSWMM model. In addition, future researchers can compare the performance of the 

PCSWMM model with other models such as HEC-HMS, SWAT, and Machine learning models 

for rainfall-runoff analysis by integrating different satellite and radar-based rainfall products.  
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CHAPTER 4 

CONCLUSION AND RECOMMENDATION 

This research focused on the performance evaluation of different hydrological models 

and rainfall products for hydrological analysis. In the first part of this investigation, performance 

of Random Forest model is compared with the process-based model HEC-HMS for rainfall 

runoff-simulation with application of satellite rainfall product. Similarly, the second part of this 

project focuses on performance evaluation of integration of the PCSWMM model with 

NEXRAD radar by involving the RAP project tool in the PCSWMM for the rainfall-runoff 

simulation in different scales of watersheds. The conclusions obtained in this project are 

explained in successive paragraphs. 

The first section of this study evaluated the feasibility of HEC-HMS and Random Forest 

for rainfall-runoff simulation and an integrated approach of machine learning and HEC-RAS for 

hydraulic analysis. HEC-HMS requires a large number of input variables, which may not always 

be available in a data-scarce region. In this scenario, the Random Forest model can be used for 

the prediction of discharge in the watershed. In addition, the Random Forest model is simple to 

build and takes less time. In this study, a PERSIANN-CCS NetCDF file was used to generate 

time-series precipitation data. The result supports the usage of PERSIANN-CCS daily 

precipitation data for rainfall-runoff simulation. Based on the models’ reasonably strong 

performance, the obtained precipitation, LULC, DEM, and SSURGO soil input data are 

sufficiently dependable for discharge simulation. Because the data sources employed in this 

study yield reasonably reliable results, they are recommended for hydrology investigations. The 

continuous simulation of rainfall-runoff processes in the basin using physical and machine 

learning models yielded good results. Peak flows were underestimated in the Random Forest 
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model and slightly overestimated in the HEC-HMS model. An integrated HEC-RAS and 

Random Forest Regression model yielded good results in predicting the runoff flood depth 

downstream of a watershed. Given these findings, it is possible to say that the Random Forest 

model could aid in rainfall-runoff simulation as a complement to the physical model. This 

discharge could be used in hydraulic modeling for flood depth and flood extent analysis, which 

could be helpful to researchers in further research. The model’s accuracy in predicting the flow 

can be increased by removing the outliers; high flood values are considered here in order to 

compensate for the prediction of the high flood values from Random Forest Regression  

Similarly, the research conducted in second part of this project was the first to integrate 

the PCSWMM model with NEXRAD radar by involving the RAP project tool in the PCSWMM 

for the rainfall-runoff simulation in different scales of watersheds. The premise of the proposed 

investigation was that incorporating radar data in the PCSWMM model may potentially enhance 

hydrologic modeling. This study chooses two watersheds (i.e., Ellerbe creek and River Des Peres 

watersheds) of different locations, drainage areas, and characteristics to test the proposed 

investigation. Ellerbe Creek watershed consists of one rainfall gauging station in the most 

upstream region of the watershed. Therefore, in the first phase of this research, the rainfall data 

obtained from the USGS gauging stations were compared with the rainfall data generated from 

the 15-minute NEXRAD radar using RAP tools in the PCSWMM model. Although the 

NEXRAD slightly underestimated for large gauge rainfall value and overestimated the small 

gauge rainfall value, the overall performance of NEXRAD radar on estimating the rainfall 

amount fell under the acceptable ranges with the average R2 value of 0.87. In the second phase of 

this study, the NEXRAD generated and USGS gauging rainfall data were applied in the 

PCSWMM model for the Ellerbe Creek watershed hydrological analysis. Two locations (i.e., 
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adjacent to the rainfall gauging station and watershed outlet) were considered for investing the 

performance of NEXRAD and the gauging station’s rainfall data for the hydrologic analysis. The 

results showed a better efficiency of gauging station rainfall data when the analysis was 

performed at node 4 (near the rainfall gauging stations). However, the performance of rainfall 

data from the gauging station was poor in depicting a discharge hydrograph at the watershed 

outlet; more specifically, the performance was unacceptable for some rainfall events. It may be 

because the single or sparse rain gauging stations in the more significant watershed cannot detect 

the spatial variability of rainfall events throughout the watershed. Similarly, the integration of 

NEXRAD data and the PCSWMM model showed an acceptable performance at both 

investigating locations of the Ellerbe Creek watershed for rainfall-runoff simulations of all the 

proposed events. The average value of RMSE, NSE, and R2 was 5.63 m3/s, 0.70, and 0.82 at the 

Ellerbe Creek watershed outlet while applying the NEXRAD radar data; in contrast, they were 

7.59 m3/s, 0.21 and 0.80 for applying rainfall data from gauging stations. In the final steps of this 

investigation, the performance of NEXRAD data was evaluated in a River Des Peres watershed, 

which has a significantly larger drainage area (150 Km2) compared to the Ellerbe Creek 

watershed. The River Des Peres watershed does not have any rainfall gauging stations; therefore, 

the performance of NEXRAD radar data was only evaluated by comparing the discharge 

hydrograph obtained by integrating NEXRAD radar data and PCSWMM model with observed 

discharge data at the watershed outlet. The RMSE, NSE, and R2 were 11.35 m3/s, 0.66, and 0.85, 

all within the acceptable ranges.   In conclusion, the results supported the investigation premises. 

This study demonstrated that using rainfall data from NEXRAD can be a feasible replacement 

for using rainfall data from surface rain gauges in the larger watersheds where rainfall gauging 

stations are typically scarce or nonexistent. Significant rainfall that caused observed flood peaks 
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in both watersheds was detected using radar-derived rainfall data. In addition, the hydrograph 

and streamflow peak predictions made by radar-driven PCSWMM models for the larger 

watersheds were correct for most of the events. 

           This study also recommends studying the integration of NEXRAD radar data and the 

PCSWMM model for event-based and continuous simulation in the future. Future researchers 

can also integrate other radar and satellite-based grid rainfall data, which is supported by the 

PCSWMM model. In addition, future researchers can compare the performance of the 

PCSWMM model with other models such as HEC-HMS, SWAT, and Machine learning models 

for rainfall-runoff analysis by integrating different satellite and radar-based rainfall products. 

In the future, researchers could work in the following areas: 

1. In this study, precipitation was only used as an input variable for the Random Forest model; 

other variables, such as temperature, infiltration, evaporation, and radiation, could be used in 

future work. In addition, feature selection of input variables could be performed for the most 

accurate selection. 

2. Other machine learning and data-driven models, such as support vector regression (SVR), long 

short-term memory (LSTM), and artificial neural networks (ANNs), could be used as prediction 

models. Future research directions could be guided by the selection of the best machine learning 

model in terms of accuracy, robustness, and reliability. 

3. This study also recommends studying the integration of NEXRAD radar data and the 

PCSWMM model for event-based and continuous simulation in the future. Future researchers 

can also integrate other radar and satellite-based grid rainfall data, which is supported by the 

PCSWMM model. In addition, future researchers can compare the performance of the 
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PCSWMM model with other models such as HEC-HMS, SWAT, and Machine learning models 

for rainfall-runoff analysis by integrating different satellite and radar-based rainfall products. 
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