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AN ABSTRACT OF THE THESIS OF

Syeda Fareeza Karimushan, for the Master of Science degree in Mathematics, presented on 
June 23, 2020, at Southern Illinois University Carbondale.

TITLE: DEVELOPMENT OF FRENET-SERRET FRAME AND THE APOLLONIAN 

WINDOW

MAJOR PROFESSOR: Dr. Jerzy Kocik

The present study focuses on Frenet-Serret frame and the Apollonian Window. In 

the first part of the study Apollonian disks are generated for first four generations by 

developing visual basic codes in excel. For the second part of the study, three orthonormal 

basis vectors, namely, tangent, normal, and binormal vectors have been calculated for the 

tangent points of Apollonian discs for the first three generations. Equations of the normal, 

osculating and rectifying planes and Taylor series approximation have been calculated for 

specific θ. Because Apollonian Window consists of planar curves with constant curvature, 

torsion is nowhere present. The planar Frenet-Serret equations for the first three generations 

for the Apollonian Window is also shown.
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CHAPTER 1

INTRODUCTION TO APOLLONIAN WINDOW AND FRENET-SERRET

FRAME

1.1 Apollonian Disk Packing

Apollonian disk packing involves the construction of the fourth disk from three ini-

tial mutually tangent disks on the Euclidean plane. The fourth or the solution disk is in-

ternally or externally tangent to the initial three disks.

Apollonian disk packing or Apollonian gasket is a version of the Apollonius’ problem

where patterns of disks are obtained from inscribing the disks in every ideal triangle which

is formed from the initial three disks. An ideal triangle is an open connected region R in

Euclidean plane. The boundary of R is made of arcs of the three mutually tangent disks

[9]. This simple construction of the fourth disk from three mutually tangent disks is based

on an old Theorem of Apollonius of Perga (262-190 BC)[10]:

Theorem 1. Given three mutually tangent disks on a plane, there exist exactly two disks

tangent to all three.

There can be both inner and outer disks in an Apollonian disk packing. Therefore,

there can be external and internal tangencies of three mutually tangent disks. Two disks

maintain external tangency if they intersect in exactly one point and the intersection of

their interior is empty. In case of internal tangency two disks intersect in exactly one point

but the intersection of their interior is not empty. In an Apollonian disk packing all disk

packings maintain external tangency[9].

1.1.1 Descartes Configuration

Descartes configuration is defined as quadruple of four mutually tangent disks. By

Theorem 4.1 [9] the curvatures of four disks in Descartes configuration satisfying equation

2(A2 +B2 + C2 +D2) = (A+B + C +D)2 (1.1)
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is called the Descartes formula [9]. Any quadruple that satisfies the Descartes equation is

a Descartes quadruple.

1.1.2 Integral Apollonian Disk Packing

In an Apollonian disk packing if the initial Descartes configuration has integer values

then the entire packing has integral curvature and conversely [3]. In an integral Apollonian

disk packing, there is an infinite number of disks with integer curvatures [9].

As defined by [9], in a Euclidean plane a two-dimensional disk is a region where the

boundary of the disk is the circle. If the region (disk) is inner with respect to the circle the

curvature of the disk is defined as a = 1
r
, where r is the radius of the circle. When the disk

is external w.r.t. the circle, the curvature of the disk is a = −1
r

.

1.1.3 Apollonian Window

Different types of integral Apollonian disk packings exist with different symmetric

properties. One of these is the Apollonian Window. In an Apollonian window the two

largest disks are congruent resulting in vertical and horizonal mirror symmetries [9]. The

Apollonian Window is particularly important as its properties encompasses multiple areas

of Mathematics, namely, number theory, algebra, geometry and Physics [9].

We can define a disk as a simple closed curve following the definition of [5]. A sim-

ple closed curve does not intersect anywhere other than joining up. Therefore, a disk is a

simple closed curve in R with period δ with δ ∈ R.

Define regular curve α : R 7→ R2 such that α(θ) = α(λ) if and only if θ − λ = kδ for

some integer k. Therefore, when θ increases by λ, α(θ) returns to its starting point.

1.2 Frenet-Serret Frame

The Frenet-Serret frame is applied to non-degenerate curves, or curves that have

non-zero curvature. Consider the curve α : I = (a, b) 7→ R3. It is arclength parameterized
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Figure 1.1: Apollonian Window

regular curve, or a unit speed curve, i.e., α′(θ) 6= 0 and arclength ‖α′(θ)‖ = 1. The curve

is a differentiable map of an open interval I = (a, b) of the real line R into a point α(θ) =

x(θ), y(θ), z(θ) ∈ R3. Differentiable means the function α(θ) has derivatives of all orders

at all points.

Definition 1. If curve α : I = (a, b) 7→ R3 is a parametrized curve, then for any a<θ<b

the arclength (of the trajectory of the particle) of α from a to θ is defined as r(θ) =
∫ θ
a
‖

α′(θ) ‖ dθ, where,

‖ α′(θ) ‖=
√

(x′(θ))2 + (y′(θ))2 + (z′(θ))2

is the length of the vector α′(θ). The arclength s(θ) of the trajectory of a particle is

the distance the particle travels. This arclength is the integral of the particle’s speed [11].

Because α′(θ) 6= 0, arclength r(θ) is a differentiable function of θ and dr
dθ

= ‖ α′(θ) ‖ [1].

In other words, α(θ) is a regular smooth curve with α′(θ) continuous at all points for all θ.

The variable θ is the parameter of the curve [1].

Lemma 1. Suppose f, g : (a, b) 7→ R3 are differentiable and satisfy f(t) · g(t) = const ∀t.

Then f ′(t) · g(t) = −f(t) · g′(t). In particular, |f(t)| = const if and only if f(t) · f ′(t) =

0 ∀t.
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By the repeated application of the above Lemma it is possible to construct the Frenet

Frame for suitable regular curves [11].

We can define the Frenet-Serret frame as a natural moving frame at each point of

the curve α [11]. For each point in the curve, the Frenet-Serret frame consists of three vec-

tors perpendicular to each other, namely, the tangent ~T (θ), principal normal ~N(θ), and

binormal ~B(θ). ~T (θ), ~N(θ), ~B(θ) forms the orthonormal basis in R3. In other words, the

Frenet-Serret trihedron consists these three vectors for the parameter value θ

Together ~T (θ), ~N(θ), ~B(θ) are called the TNB Frame. The orientation of a particle

along a curve is completely determined by the TNB Frame. We can measure the change

in the moving frame [6] by differentiating ~T (θ), ~N(θ), ~B(θ) as the particle moves along a

curve.

~T (θ) =
α′(θ)

‖ α′(θ) ‖
(1.2)

~N(θ) =
1

κ(θ)
~T ′(θ) =

~T ′(θ)

‖ ~T ′(θ) ‖
(1.3)

~B(θ) = ~T (θ)× ~N(θ) (1.4)

As can be seen from equation (2), ~N(θ) is also a unit vector. Because ~T ′(θ) · ~T (θ) =

0, ~T (θ) and ~N(θ) are orthogonal to each other. Therefore, ~B(θ) = ~T (θ) × ~N(θ) is orthogo-

nal to both ~T (θ) and ~N(θ).

The three planes, namely, the osculating, normal and rectifying planes associated

with the TNB frame describe the geometry of the curve. The osculating plane is spanned

by the vectors ~T (θ) and ~N(θ) and the normal plane is spanned by the vectors ~N(θ) and

~B(θ). The rectifying plane is spanned by the vectors ~T (θ) and ~B(θ).

1.3 Frenet-Serret Apparatus

The Frenet-Serret apparatus contains the above three unit vectors, curvature κ(θ)

and torsion τ(θ) of the parametric curve. Curvature, κ(θ) is a real-valued function of α(θ)
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such that κ(θ) = ‖ ~T ′(θ)‖ > 0. κ(θ) tells the rate at which the direction of ~T (θ) changes

[4]. Torsion tells to what degree a particle is twisting out of the osculating plane. The os-

culating plane is defined by the ~T (θ) and ~N(θ). In other words, torsion measures the rate

of change of ~B(θ).

To interpret curvature and torsion with regard to ~N(θ), curvature measures how

much ~N(θ) changes in the direction tangent to a particular curve, and torsion measures

how much ~N(θ) changes in the direction orthogonal to the osculating plane of the curve.

κ(θ) = ‖ ~T ′(θ)‖ (1.5)

~B′(θ) = −τ(θ) ~N(θ) (1.6)

τ(θ) = − ~N(θ) · ~B′(θ) (1.7)

A plane curve is determined only by its curvature. A disk (cosθ, sinθ) has a unit

curvature everywhere and has zero torsion τ(θ).

Theorem 2. A space curve is planar if and only if its torsion is everywhere zero.

Let α be unit speed non-linear curve, then α is planar curve if and only if τ = 0.

Following the proof given by Koch [6]

Suppose α lies in plane P , then:

~T (θ) = lim
δ→0

α(θ + δ)− α(θ)

δ

is parallel to P . Consequently

κ ~N(θ) = lim
δ→0

~T (θ + δ)− ~T (θ)

δ

is also parallel to P . Then ~B(θ) = ~T (θ) × ~N(θ) is perpendicular to P ∀ θ. ~B(θ) has

unit length and varies with θ, therefore, ~B(θ) is constant and ~B′(θ) = −τ ~N(θ) = 0

Conversely, suppose τ = 0. Then ~B(θ) is constant. Fix θ0 and define plane Q:

Q = {q|(q − α(θ0)) · ~B(θ) = 0}

We want to claim α is in plane Q. Substitute α for q. Then (α(θ) − α(θ0)) · ~B(θ) is
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constant since (α(θ) − α(θ0))
′ = ~T (θ) · ~B(θ) = 0. For θ = θ0, this constant is always zero

and α(θ) always satisfy the equation of the plane. QED.

1.4 Frenet-Serret Equations

The Frenet-Serret set of equations contains a compact set of differential equations

that can elegantly describe the intrinsic geometric properties of a curve in Euclidean space

R3. These three equations are expressed in terms of curvature and torsion.

dT

dθ
= κN (1.8)

dN

dθ
= −κT + τB (1.9)

dB

dθ
= −τN (1.10)

1.5 Planar Frenet-Serret Equations

Let α be a regular smooth curve parametrized by arclength, therefore, |α′| = 1. Sup-

pose α has a continuous third derivative. Let ~T (θ) and ~N(θ) be the tangent and princi-

pal normal vectors of α respectively at parameter value θ0. Then the planar Frenet-Serret

equations are:

dT

dθ
= κN (1.11)

dN

dθ
= −κT (1.12)

1.6 Developing Frenet-Serret Structure for the Apollonian Window

The present research attempts to develop a Frenet-Serret structure for the Apollo-

nian Window. As mentioned earlier, in an Apollonian Gasket, in this case, an Apollonian

Window, a fourth disk is formed from three initial tangent disks with the fourth one being

tangent to each of the three parent disks. This tangent disk formation is an infinite pro-

cess.
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Frenet-Serret formulas measure the rate of change of the three orthonormal vectors

with respect to arc-length. Therefore, they are valid only for unit-speed curve [5]. Apollo-

nian Disk Packing involves integer curvatures, therefore, we have non-unit speed curves.

1.7 Reparametrization of a Curve

When α is a regular curve but not unit-speed curve we can perform a reparametriza-

tion α̃ [5].

Definition 2. Let I and J be intervals. Define α : I 7→ R3 be a curve and r be a differen-

tiable function. Then the composite function α̃ = α ◦ r is called reparametrization of α by

the differentiable function r.

Following [5], for α̃, the fundamental geometric meaning of the elements of Frenet-

Serret apparatus remains the same as for α. At each time θ ∈ J , the curve α̃ is at the

point α̃(θ) = α̃(s(θ)). If we take θ as the time parameter, α̃ follows the same route as α,

but it reaches a given point at a different time.

Again, if curve α : I = (a, b) 7→ R3 is a parametrized curve, then for any a<θ<b the

arclength (of the trajectory of the particle) of α from a to θ, we define the parameter

s = L(θ) =

∫ θ

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

which measures the length along the curve from α(a) to α(θ).

Following Fundamental Theorem of Calculus we know:

ds

dθ
= L′(θ) =

√
(x′(θ))2 + (y′(θ))2 + (z′(θ))2 =‖ α′(θ) ‖

Because α′(θ) 6= 0, then L′(θ) > 0 ∀ θ. This means as we move along the curve

distance traveled increases. An increasing function means s = L(θ) is invertible. Thus

θ(s) = L−1(s).

Consider a circle with radius ρ. The parametric equation for the circle:
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α(θ) =< ρcosθ, ρsinθ > θ ∈ [0, 2π]

α′(θ) =< −ρsinθ, ρcosθ > θ ∈ [0, 2π]

Then, s = L(θ) =

∫ θ

a

‖ α′(t) ‖ dt =

∫ θ

a

ρdt = ρθ

Solving θ in terms of s we get θ(s) = L−1(s) = s
ρ
. Thus we have

α(θ(s)) = L−1(s) =< ρ cos
s

ρ
, ρ sin

s

ρ
>, s ∈ [0, 2πs]

1.8 Example of Parametrization and Reparametrization of a disk in Apollo-

nian Window

α =<
1

6
cos θ,

1

6
sin θ >

α′ =< −1

6
sin θ,

1

6
cos θ >

‖ α′ ‖ =
1

6

α̃(s) =<
1

6
cos 6s,

1

6
sin 6s >

α̃′(s) =< − sin 6s, cos 6s >

‖ α̃′(s) ‖ = 1

Then, the unit tangent ~T (θ), unit normal ~N(θ) and T̃ (s), Ñ(s) after reparametriza-

tion are:

~T (θ) =
< −1

6
sin(θ), 1

6
cos(θ) >

1
6

=< −sin(θ), cos(θ) >

~N(θ) =
< −cos(θ),−sin(θ) >√
(−cos(θ))2 + (−sin(θ))2

=< −cos(θ),−sin(θ) >

8



T̃ (s) =
< −sin(6s), cos(6s) >√
(−sin(6s))2 + (cos(6s))2

=< −sin(6s), cos(6s) >

Ñ(s) =
< −cos(6s),−sin(6s) >√
(−cos(6s))2 + (−sin(6s))2

=< −cos(6s),−sin(6s) >

Therefore, for the Apollonian Window, a parametric curve and a reparametrized

curve will both produce unit tangent, normal and binormal vectors. This is because the

Apollonian Window consists of all but one non-unit constant speed curves. In a constant

speed curve, acceleration is orthogonal to velocity, thus α̃ · α̃ being constant is equivalent

to α̃′ · α̃′ = 2α̃′ · α̃′′ = 0 [5].

Therefore, it is possible to give a Frenet-Serret structure to the Apollonian Window

using parametric equation. Because infinite number of points of tangency for each disk can

be generated, it will be interesting to see the evolution of the unit tangent, unit normal,

and the unit binormal vectors in the Apollonian Window.

The Apollonian Window constitute of two lines of reflective symmetry. One line runs

through the centers of the disks of radius two, and the other line passes through the cen-

ter of the disk of radius three. Because these two lines are perpendicular, the Apollonian

Window falls under the rotational symmetry of degree two. Therefore, if we develop the

Frenet-Serret structure for the Apollonian Window of any one quadrant, we can to have

the structure for the entire Window.

9



CHAPTER 2

METHODOLOGY

2.1 Generation of Curvatures in Apollonian Window

Because of the quadratic nature of Descartes formula it is difficult to calculate the

curvatures of the subsequent disks. In 1974 Boyd solved the Descartes formula through

the process of linearization [9]. Starting with three mutually tangent disks with curvatures

a, b, c the two disks tangent to those three initial disks have curvatures d and d′ satisfying 

the linear equation:

d+ d′ = 2 (a+ b+ c) (2.1)

If the initial Descartes configuration has disks of integral curvatures, then the entire

packing is integral and vice versa, an observation made by Soddy (1937) [3].

The present study begins with three mutually tangent disks of the structure of an

Apollonian Window. It starts with a disk A of radius and curvature one, and two disks,

B and C, contained inside disk A. These three disks are externally tangent to each other.

The radii of disks B and C are 1
2
, therefore curvatures of B and C are 2. When disks B

and C are placed inside disk A, two ideal triangles are formed. This can be named as the

zero generation consisting the set of curvatures [−1, 2, 2, 3]. Here we have assigned nega-

tive curvature to the bounding large disk A, so that all the other disks will have positive

curvatures, maintaining the validity of the Descartes formula [10].

In the second step, two ideal triangles fit two tangent disks D and E as large as pos-

sible with curvatures 3. This results in the formation of six more ideal triangles inside disk

A. Three disks with curvatures 6, 6, 15 fit both on the top and bottom ideal triangles re-

spectively because of vertical and horizontal mirror symmetry of the Apollonian Window.

This results in the formation of three sets of curvatures [6, 3,−1, 14], [2, 6,−1, 11] and

[2, 3, 6, 23], each on the four quadrants of the large disk A. We can name these three sets

as the first generation curvatures.
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In a similar process a second generation of 9 sets of curvatures are formed from 9

sets of mutually tangent disks. And in the third generation 27 sets of curvatures are gen-

erated from 27 groups of mutually tangent disks. This process of ideal triangle formation

and disks fill the entire plane and it is an infinite process.

The following table provides a description of generations of curvatures and the num-

ber of ideal triangles and the sets of mutually tangent circles. Because of symmetric na-

ture of Apollonian Window the table only describes the first quarter of larger disk of ra-

dius one.

Table 2.1: Number of Tangent Discs for First Three Generations

Generation No. of Ideal Triangles No. of Sets of Mutually Tangent Disks
0 1 1
1 3 3
2 9 9
3 27 27

2.1.1 Algorithm to Generate Curvatures for the Apollonian Window

The present study followed the algorithm [9] in order to generate curvatures of the

disks in the ideal triangles:

a′ = 2 (a+ b+ c+ d)− 3a (2.2)

where a, b, c are the curvatures of the three initial tangent disks and d is the solution disk

that is inscribed inside the ideal triangle formed by disks of curvatures a, b and c. a′ is the

curvature of the disk that results from the three tangent disks with curvatures b, c and d.

For the next generation, disk a is replaced by disk d of the previous generation whereas

disk b and c remain unchanged for the same branch. At every generation a set of three

children (sets of curvatures) is produced from each branch due to the formation of three

ideal triangles at each branch. Through this recurrence formula it is possible to produce

infinite number of disks in the Apollonian Window.

It should be noted that it is possible to generate an infinite number of curvatures for
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an infinite number of generations starting from generation zero if the following generations

are from the same branch, e.g., disks b and c remain unchanged for all the generations.

The present research generated 1000 data of curvatures for generation one, two and

three. This data is produced in excel using visual basic code.

Standard Parametrization of a Circle: There exists a natural parametrization of a

circle by the very definition of trigonometric functions [11]:

α(θ) = ρ(cosθ, sinθ)

= ρcos(θ), ρsin(θ) 0 ≤ θ ≤ 2π

Standard Parametrization of a circle with radius ρ

α(θ) = (ρ cos θ, ρ sin θ), θ ∈ [0, 2π]

α′(θ) = (−ρ sin θ, ρ cos θ)

‖ α′(θ) ‖ = ρ

2.2 Frenet-Serret Structure for the Apollonian Window

In order to develop a Frenet-Serret structure for the Apollonian Window, the first

step is to show the tangent points of the disks. The following tree diagram has been cre-

ated to show the tangent points for each generation. For example, the tangent points of

the disks with curvatures 2, 3 and -1 for generation zero are the points (2, 3), (2,−1) and

(3,−1). The pair of tangent points of the disks with curvatures (2, 3) and (3,−1) produces

tangent point at (3, 6). Similarly, (2, 3) and (2,−1) produces tangent point at (2, 6) for

generation one. The following tree diagram shows the tangent points upto the fourth gen-

eration.
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(2, 3,−1)

(2, 3)(2,−1)→ (2, 6)

(2, 6)(2, 3)→ (2, 23)

(2, 23)(2, 6)→ (2, 59)

(2, 59)(2, 23)→ (2, 182)

(2, 59)(2, 6)→ (2, 111)

(2, 23)(2, 3)→ (2, 50)

(2, 50)(2, 23)→ (2, 147)

(2, 50)(2, 3)→ (2, 87)

(2, 6)(2,−1)→ (2, 11)

(2, 11)(2, 6)→ (2, 39)

(2, 39)(2, 11)→ (2, 98)

(2, 39)(2, 6)→ (2, 83)

(2, 11)(2,−1)→ (2, 18)

(2, 18)(2, 11)→ (2, 63)

(2, 18)(2,−1)→ (2, 95)

(2, 3)(3,−1)→ (3, 6)

(3, 6)(2, 3)→ (3, 23)

(3, 23)(3, 6)→ (3, 62)

(3, 62)(3, 23)→ (3, 170)

(3, 62)(3, 6)→ (3, 119)

(3, 23)(2, 3)→ (3, 50)

(3, 50)(3, 23)→ (3, 150)

(3, 50)(2, 3)→ (3, 87)

(3, 6)(3,−1)→ (3, 14)

(3, 14)(3, 6)→ (3, 47)

(3, 47)(3, 14)→ (3, 122)

(3, 47)(3, 6)→ (3, 98)

(3, 14)(3,−1)→ (3, 26)

(3, 26)(3, 14)→ (3, 87)

(3, 26)(3,−1)→ (3, 42)

Figure 2.1: Tree Diagram of Tangent Points
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The next step calculates the elements of the Frenet-Serret apparatus to develop a Frenet-
Serret structure for the Apollonian Window. 



We can also derive equations of the three planes, namely, the osculating, normal and

rectifying plane for the Apollonian Win-dow.

To understand how curvature influence the shape of α(θ) Taylor Polynomial will be

calculated for different θ.

α(θ) ≈ α(θ0) + θα′(θ0) +
θ2

2
α′′(θ0) +

θ3

6
α′′′(θ0) + ... (2.3)

Denote

α(θ0) = α, κ(θ0) = κ, τ(θ0) = τ, ~T (θ0) = T, ~N(θ0) = N, ~B(θ0) = B

It should be noted

α′ = T

α′′ = T ′ = κN

α′′′ = (κN)′ = κ′N + κN ′

= κ′N + κ(−κT + τB)

Then we can write

α(θ) ≈ α(θ0) + θT0 +
θ2

2
κ0N0 +

θ3

6
κ0τ0B0 (2.4)

The first two terms in Equation 4 denote linearization and the third term is the sec-

ond order approximation with respect to arclength. The fourth term involves torsion and

because we only have planar curve (i.e., ~B is constant) for the Apollonian Window, the

fourth term vanishes.
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CHAPTER 3

CALCULATIONS AND FINDINGS

For the first part of the research, 1000 curvature data have been generated for gener-

ation one, two and three of the Apollonian Window.

In this chapter the elements of the TNB apparatus for the Apollonian Window have

been calculated. Equations of planes for specific θs are also shown. The following table

provides the elements of TNB apparatus for the tangent points of the first three genera-

tions. As can be seen, for the first two parametric equations of generation zero, ~T (θ) and

~N(θ) are < −sin(θ), cos(θ), 0 > and < −cos(θ),−sin(θ), 0 > respectively. For the para-

metric equation < −sin(θ),−cos(θ), 0 >, ~T (θ)and ~N(θ) are < sin(θ),−cos(θ), 0 > and

< cos(θ), sin(θ), 0 > respectively. As can be seen from the table, the parametric equations

vary only by a scalar value. Therefore, ~T (θ) and ~N(θ) are the same for the entire Apollo-

nian Window. Because planar curve has constant ~B(θ) we see that ~B(θ) = k̂ for the entire

Window irrespective of the curvature of the disks for different generations.

Table 3.1 provides the parametric equation of the discs at different tangent points

for the first three generations. It also shows the unit tangent, normal and biromal vectors

as well as curvatures for the first three generations. Table 3.2 gives the equations of the

osculating, normal and rectifying planes for specific θ.
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Table 3.1: Tangent, Normal and Binormal Vectors at Tangent Points for First Three Generations

Generation Tangent Points Parametric Equation of Discs at Tangent Points Unit Tangent Unit Normal Unit Binormal Curvature

0 (2, 3,−1)→ (2, 3)(2,−1)(3,−1)

< 1
2
cos(θ), 1

2
sin(θ), 0 >

< 1
3
cos(θ), 1

3
sin(θ), 0 >

< −cos(θ),−sin(θ), 0 >

< −sin(θ), cos(θ), 0 >
< −sin(θ), cos(θ), 0 >
< sin(θ),−cos(θ), 0 >

< −cos(θ),−sin(θ), 0 >
< −cos(θ),−sin(θ), 0 >
< cos(θ), sin(θ), 0 >

k̂
k̂
k̂

2
3
−1

1
(2, 3)(2,−1)→ (2, 6)
(2, 3)(3,−1)→ (3, 6)

< 1
6
cos(θ), 1

6
sin(θ), 0 >

< 1
6
cos(θ), 1

6
sin(θ), 0 >

< −sin(θ), cos(θ, 0 >
< −sin(θ), cos(θ), 0 >

< −cos(θ),−sin(θ), 0 >
< −cos(θ),−sin(θ), 0 >

k̂
k̂

6
6

2

(2, 6)(2, 3)→ (2, 23)
(2, 6)(2,−1)→ (2, 11)
(3, 6)(2, 3)→ (3, 23)

(3, 6)(3,−1)→ (3, 14)

< 1
23
cos(θ), 1

23
sin(θ), 0 >

< 1
11
cos(θ), 1

11
sin(θ), 0 >

< 1
23
cos(θ), 1

23
sin(θ), 0 >

< 1
14
cos(θ), 1

14
sin(θ), 0 >

< −sin(θ), cos(θ), 0 >
< −sin(θ), cos(θ), 0 >
< −sin(θ), cos(θ), 0 >
< −sin(θ), cos(θ), 0 >

< −cos(θ),−sin(θ), 0 >
< −cos(θ),−sin(θ), 0 >
< −cos(θ),−sin(θ), 0 >
< −cos(θ),−sin(θ), 0 >

k̂
k̂
k̂
k̂

23
11
23
14

Table 3.2: Equation of the Three Planes for Specific θ

θ ~T (θ) ⊥ Normal Plane ~B(θ) ⊥ Osculating Plane ~N(θ) ⊥ Rectifying Plane
0 y = 0 z = 0 x = 1

6
π
6

x =
√

3y z = 0 y = 1
3
−
√

3x
π
4

x = y z = 0 y = 1
3
√
2
− x

π
3

x = y√
3

z = 0 y = 1
3
√
3
− x√

3
π
2

x = 0 z = 0 y = 1
6
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Table 3.3 provides the planar Frenet-Serret equations for the first three generations

of the Apollonian Window.

Table 3.3: Planar Frenet-Serret Equations for the First Three Generations

Generation ~T ′(θ) ~N ′(θ)

0

< −2cos(θ),−2sin(θ) >
< −3cos(θ),−3sin(θ) >
< −sin(θ),−cos(θ) >

< 2sin(θ),−2cos(θ) >
< 3sin(θ),−3cos(θ) >
< −cos(θ),−sin(θ) >

1 < −6cos(θ),−6sin(θ) > < 6sin(θ),−6cos(θ) >

2

< −23cos(θ),−23sin(θ) >
< −11cos(θ),−11sin(θ) >
< −14cos(θ),−14sin(θ) >

< 23sin(θ),−23cos(θ) >
< 11sin(θ),−11cos(θ) >
< 14sin(θ),−14cos(θ) >

Table 3.4 provides Taylor series approximation for specific θs for the parametric

curve < 1
6
cos(θ), 1

6
sin(θ), 0 >.

Table 3.4: Taylor Series Approximation for a Parametric Curve

θ Taylor Series Approximation for Parametric Curve < 1
6
cos(θ), 1

6
sin(θ), 0 >

0 < 2−θ2
12
, θ
6
, 0 >

π
6

< 2
√
3−2θ−

√
3θ2

24
, 2+2

√
3θ−θ2
24

, 0 >
π
4

< 2
√
2−2
√
2θ−
√
2θ2

24
, 2
√
2+2
√
2θ−
√
2θ2

24
, 0 >

π
3

< 2−2
√
3θ−θ2
24

, 2
√
3+2θ−

√
3θ2

24
, 0 >

π
2

< −θ
6
, 2−θ

2

12
, 0 >

3.1 Summary and Conclusion

The present research had twofold purpose. The first one was to generate Apollonian

data. By using the algorithm provided in [9] 1000 curvature data have been produced for

first four generations. This was done by writing Visual Basic code in Excel.

The second part of the thesis focused on the Frenet-Serret structure and the Apol-

lonian Window. A tree diagram is formed to show the tangent points of the disks for the

first five generations. Parametric equations for the disks of the first three generations of

Apollonian Window is shown. Based on these equations, the three orthnormal basis vec-

tors, namely, tangent ~T (θ), principal normal ~N(θ) and binormal ~B(θ) vectors, curvature κ

17



and torsion τ of the disks are calculated. The values for the curvatures are in agreement

with the curvatures originally given in the Apollonian Window as expected.

The research also calculates the equations of the three planes, namely, the normal,

osculating and rectifiying planes for specific θ. The planar Frenet-Serret equations for the

first three generations are shown. Taylor series approximation for different values of θ for a

parametric curve is also calculated.

Because we have planar curves in the Apollonian Window, the curve α never leaves

the osculating plane. This property is shown by the finding that ~B(θ) is constant and tor-

sion τ = 0.
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