
Southern Illinois University Carbondale Southern Illinois University Carbondale

OpenSIUC OpenSIUC

Theses Theses and Dissertations

5-1-2020

PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER

PHYSICALSYSTEMS VERIFICATION PHYSICALSYSTEMS VERIFICATION

Joseph Cralley
Southern Illinois University Carbondale, jkolecr@gmail.com

Follow this and additional works at: https://opensiuc.lib.siu.edu/theses

Recommended Citation Recommended Citation
Cralley, Joseph, "PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICALSYSTEMS
VERIFICATION" (2020). Theses. 2668.
https://opensiuc.lib.siu.edu/theses/2668

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC.
It has been accepted for inclusion in Theses by an authorized administrator of OpenSIUC. For more information,
please contact opensiuc@lib.siu.edu.

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/theses
https://opensiuc.lib.siu.edu/etd
https://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/theses/2668?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICAL SYSTEMS

VERIFICATION

by

Joseph Cralley

B.S., Southern Illinois University Carbondale, 2018

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

School of Computing
in the Graduate School

Southern Illinois University Carbondale
May 2020

THESIS APPROVAL

PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICAL SYSTEMS

VERIFICATION

by

Joseph Cralley

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Computer Science

Approved by:

Dr. Henry Hexmoor, Chair

Dr. Bardh Hoxha, Co-Chair

Dr. Banafsheh Rekabdar

Dr. Norman Carver

Graduate School
Southern Illinois University Carbondale

April 1, 2020

AN ABSTRACT OF THE THESIS OF

Joseph Cralley, for the Master of Science degree in Computer Science, presented on April

01, 2020, at Southern Illinois University Carbondale.

TITLE:PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICAL

SYSTEMS VERIFICATION

MAJOR PROFESSOR: Dr. Henry Hexmoor

Failures in cyber physical systems can be costly in terms of money and lives. The

mars climate orbiter alone had a mission cost of 327.6 million USD which was almost

completely wasted do to an uncaught design flaw. This shows the importance of being able

to define formal requirements as well as being able to test the design against these

requirements. One way to define requirements is in Metric Temporal Logic (MTL), which

allows for constraints that also have a time component. MTL can also have a distance

metric defined that allows for the calculation of how close the MTL constraint is to being

falsified. This is termed robustness.

Being able to calculate MTL robustness quickly can help reduce development time

and costs for a cyber physical system. In this thesis, improvements to the current method

of computing MTL robustness are proposed. These improvements lower the time

complexity, allows parallel processing to be used, and lowers the memory foot print for

MTL robustness calculation. These improvements will hopefully increase the likelihood of

MTL robustness being used in systems that were previously inaccessible do to time

constraints, data resolution or real time systems that need results quickly. These

improvements will also open the possibility of using MTL in systems that operate for a

large amount of time and produce a large amount of signal data.

i

ACKNOWLEDGMENTS

I would like to thank:

Dr. Bardh Hoxha

Dr. Henry Hexmoor

Ourania Spantidi

ii

DEDICATION

I dedicate this paper to: To my loving parents Jean and Kevin who have supported me all

these years. They have always been there for me when I have needed them most.

To my fiance Megan who has given me strength and motivation over the years. Her love

has pushed me to work hard and always try my best.

To my colleague Ourania who has been a mentor and a friend to me. I could not imagine

making it this far without her help.

iii

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT . i

ACKNOWLEDGMENTS . ii

DEDICATION . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ALGORITHMS . viii

CHAPTERS

CHAPTER 1 - Introduction . 1

1.1 Contribution . 4

CHAPTER 2 - Related Work . 5

CHAPTER 3 - Preliminaries . 7

3.1 MTL . 7

CHAPTER 4 - TLTk overview . 10

4.1 Structure . 10

4.1.1 Signals and System . 10

4.1.2 Calculation Structure 11

4.1.3 Predicate Calculation 12

4.1.4 Logical MTL operations 13

4.1.5 Temporal MTL operations 14

CHAPTER 5 - Experimental Results . 20

5.1 Hardware and Software . 20

iv

5.2 Serial Execution vs Parallel Execution 20

5.3 TLTk vs Breach . 21

5.4 TLTK vs STALIRO . 23

CHAPTER 6 - Conclusion and Future Work 25

REFERENCES . 26

VITA . 28

v

LIST OF TABLES

TABLE PAGE

Table 3.1 MTL logical semantics . 8

Table 3.2 MTL robustness semantics . 9

Table 5.1 Threaded vs Unthreaded TLTk time in seconds 21

Table 5.2 One dimensional formula list . 21

Table 5.3 Larger Dimensional Formulas . 24

vi

LIST OF FIGURES

FIGURE PAGE

Figure 4.1 Parse Tree of MTL formula ϕ = ♦(¬r1 ∧ r2) 11

Figure 4.2 Memory table of ϕ = ♦(¬r1) . 12

Figure 5.1 One dimensional execution time(seconds) 22

Figure 5.2 Higher dimensional execution time(seconds) 23

vii

LIST OF ALGORITHMS

ALGORITHM PAGE

Algorithm 1 Not sub task. 13

Algorithm 2 And sub task. 14

Algorithm 3 Or sub task. 14

Algorithm 4 find max(robustness, start, end) 16

Algorithm 5 find min(robustness, start, end) 16

Algorithm 6 search sorted(τ, start, end, time) 17

Algorithm 7 Finally(I,ε,τ ,ς) . 18

Algorithm 8 Global(I,ε,τ ,ς) . 19

viii

CHAPTER 1

INTRODUCTION

Cyber physical systems (cps) is a mechanism where an algorithm has to interact with

or control some piece of physical hardware. Modern cps are becoming more complex and

integral to everyday life for an increasing amount of people. It has even become

commonplace for people to trust their lives to the performance of a cps. For instance, most

newly produced cars do not have a direct physical connection between the controls and the

wheels and motor. The signals from the controls are sent through the car’s computer,

which processes them and then sends a signal to the motor controls and steering controls.

This makes it very important to test the software that those computers run rigorously.

When rigorous testing is not performed on the algorithms errors can easily slip into the

finished product. One example is the Mars Climate Orbiter(MCO) failure.[5] MCO was

launched on top of a Delta II launch vehicle on December 11, 1998 to profile the structure

of the martian atmosphere. It failed its Mars Orbit Insertion maneuver, which caused loss

of the signal and a mission failure. The root cause listed for the mission failure was noted

as “Failure to use metric units in the coding of a ground software file, ‘SmallForces’, used

in trajectory models” with a primary contributing factor of “Undetected mismodeling of

spacecraft velocity changes”. This incident shows the importance of having formal Model

Checking Techniques[9].

Model Checking has become integral to modern engineering techniques. A model is an

easier to produce representation of an engineering project. A model can be a physical small

scale representation of the project or a mathematical representation of the project. This

paper will mostly focus on mathematical models that can be simulated on a computer.

Models are often cheaper to make than implementing a full scale project and can find

design flaws that make projects both easier to implement and more efficient. These models

are designed by engineers that make certain assumptions about what the intended system

will perform under. These assumptions can be wrong, as seen in the MCO launch, where

1

they assumed the wrong system of measurements. After the model is made it is tested

under simulated conditions, which will produce an output signal of the states that the

model reaches at different times in the simulation. The state signal that the simulation

produces of the model can be used to check if the model performed successfully or if it

reached some sort of bad state. Before running the simulation, the starting condition of the

model is defined. If a car is used as an example this could be variables like velocity,

position, and angle. There may be multiple starting configurations in the car example,

such as the velocity being between 20 and 30 mile per hour. All the possible start

conditions of a model about to be simulated are labeled the starting state space. From the

starting state space there are reachable states and possibly states that can not be reached.

An example of an unreachable state is you being unable to drive a car faster than its max

speed. Any state with a speed faster than that car’s max is unreachable.

When designing a model it is important to define a desired state pace and a undesired

state space. These state spaces define what the designer wants the model to do and what it

should not do. Looking at the MCO, its desired state space was a specific orbit around

mars. However, due to the wrong units of measurement being used it reached the

undesirable state space of being not in an orbit around mars. This means the velocity and

position of the satellite do not exist inside the set of desired states. One of the main

questions that can be asked is the possibility for a cps to reach a undesirable state.

Someone’s initial attempt to answer this question might be to successfully search all

possible states of the model. This can be very effective if the feasible state space is a small

finite space. Unfortunately, this is not the case for most models because most models have

infinite state spaces. For example, the MCO would want to model MCO’s velocity.

Velocity is a continuous variable, so any range of velocities where the lower bound and

upper bound are not equal has infinite points to search.

One commonly used method to deal with infinite state spaces is theorem proving.

Theorem proving involves abstracting the the cps down to important mathematical

2

properties. By posing the problem as theorems and lemmas it is possible to prove if a

specification is satisfied or not. These methods can be very useful in some situations since

they cover can cover the entire state space. However, they are often very complex and work

intensive to set up properly. This task can be made easier by using automated theorem

proving techniques.

When running simulations of models, the time the model exists in a certain state

space could be important. For example, a processor might be able to have a current

temperature hotter than its max safe temperature. As long as it returns back to safe

temperatures within a specific time frame there should be no damage. A language that

allows for the expression of such temporal relationships is metric temporal logic (MTL).[6]

MTL allows for temporal statements to be applied to boolean predicates. An example of a

statement that can be made with MTL could be Finally(♦) MCO must reach a stable orbit

around mars. This means there is some point in time where MCO reaches a state that it is

in a stable orbit. There are also the global(�) and until(U) expressions. Global means the

predicate has to always be true for the global statement to be true. Until has two operands

and says the left operand must be true until the right operand becomes true. These

formulas can be nested as well. For example, let us say r1 is that MCO is in a stable orbit

around mars. Then the following MTL formula ♦(�(r1)) means there is some point in

MCO’s mission that it will always stay in a stable orbit. This type of expressiveness can

make MTL very powerful for defining formulas that models have to adhere to in order to

be considered correct.

Having MTL formulas just returning true or false is useful, but they can also be

extended to return more relevant information. [4] Predicates can be changed to be

bounded sets that have some sort of distance metric. The distance metric for the set

defined by a predicate should be positive when outside the set and negative when inside

the set. This distance can be used in MTL formulas to produce a robustness value that

indicate how far away an MTL formula is from switching states. This robustness can help

3

engineers by providing a metric to determine how close a model is from failing. The

robustness can also be used in an optimization algorithm like simulated annealing to help

find maximums or minimums in robustness value.[10] Engineers might want to search for

minimums in robustness value to find points where there models fail.

There are a few tools that compute MTL robustness, but this paper will focus on two

of them. The two tools looked at in this paper will staliro and breach.[13][11][12]. The

contributions of this paper will be based on staliro’s temporal robustness calculation

algorithm dp taliro.[1]

1.1 CONTRIBUTION

In this paper, a change to the dp taliro is suggested that allows for a reduction of time

complexity and opens the possibility of parallel computing to be used when computing

MTL robustness. The first change is made to the order in which the algorithm processes

time steps. Processing all the values in one subformula before processing the next instead

of processing all subformulas on a time step opens up the possibility for parallel processing.

The second change is made to the way lower and upper bound time steps are found. The

dp taliro algorithm did extra searching through time steps that turns out to be

unnecessary. This change lowers the time complexity based on the interval size. Finally a

change to how memory is managed is suggested to allow for a smaller memory usage. This

change can drastically impact how much memory is needed at one time at the cost of

needed to allocate and deallocate memory when needed.

4

CHAPTER 2

RELATED WORK

One of the first implementations of temporal logic is Linear Temporal Logic (LTL) [7].

LTL logic allows for a definition of a temporal formula with a few base operators. It then

takes in a string and see if that string matches what the formula describes. If the string is

with in the formula’s parameters then the statement is true otherwise it is false. When

processing LTL the process string gets passed to predicates. The process string gets read

from the lowest time step to highest and the predicate produces a new string with

characters of true or false.

LTL has been extensively used for verification. In the paper [8] LTL logic is used to

verify modeled circuits. The modeling software used is SystemC which is a C++ library

that allows for event based modeling and simulations. Since the they want to check digital

circuits they are able to perform proof by exhaustion verification techniques on the circuits.

This checks all the states of the circuit to see wither if violates the LTL formula or not.

This application is just one example of the usefulness of LTL logic however it does have its

limitations.

LTL logic can only define constraints over the entire input string. This can be very

useful but there are some applications where being able to look over a certain time interval

is crucial. Metric Temporal Logic (MTL) adds the necessary syntax and semantic to LTL

to facilitate this. The MTL syntax adds time intervals to LTL operations which specify

how far in the future does this specification holds. MTL has been expanded further in [4]

to move from boolean statements to statements that produce a distance metric. This

distance indicates how far the formula is to being falsified and is called MTL robustness.

This robustness metric has been used in many applications in cyber physical systems. In

the paper [3] the authors use MTL robustness to verify the path finding of drones. To do

this they use MTL robustness to define safety margins for an enhanced A* algorithm.

MTL robustness calculation is introduced in [4] and has been implemented in a few

5

algorithms. One of the early implementations was in MATLAB with the

FW-TALIRO(ForWard algorithm for TemporAl LogIc RObustness [13]. It was part of the

S-TALIRO tool box for MATLAB. The FW-TALIRO algorithm uses formula rewriting

techniques to calculate robustness. This algorithm has a high time complexity and a faster

approach was developed. S-TALIRO changed its robustness calculation algorithm to

DP-TALIRO [1], which used a table-based approach to calculate robustness. This table is

computed with one algorithm that uses if statements to decide what operation to use. This

can make the implementation compact but also makes it harder for others to add to the

system. The S-TALIRO implementation is very flushed out; it is able to calculate the

robustness of higher dimensional predicates in several forms and has been highly tested.

The S-TALIRO version of DP-TALIRO also has a parser that can take in MTL formulas as

strings of text. However, the S-TALIRO implementation of DP-TALIRO exaction time

increases very rapidly when a signal has a large amount of time steps or the MTL formula

is very large. S-TALIRO with the DP-TALIRO algorithm has been tested in automotive

applications as seen in [16].

Breach is another implementation of a MTL robustness calculation tool [11] It is also

designed to work in MATLAB. It has the advantage of not having the large increase of

execution time over staliro. However it is hard to compare staliro and breach directly since

breach seems to not support higher dimensional predicates. This means that if two or more

variables depend on each other breach will not be able to model that. Breach works on a

substask structure where each MTL operation is treated independent of each other. This

means it should be easy to add new operations to breach.[15]

6

CHAPTER 3

PRELIMINARIES

3.1 MTL

MTL is an extension of boolean logic that allows for statments through intervals of

time. MTL is a recursive syntax that consists of

ϕ |= true|predicate|ϕ1 ∧ ϕ2|¬ϕ1|ϕ1UIϕ2|Xϕ1

A predicate is an atomic proposition that can either be true or false. ∧,¬ are

unchanged from normal logical ∧,¬. The UI is the until operator where I is and interval

[a, b] : a, b ∈ R+ : 0 ≤ a < b. The X is the next operator. Most implementations of MTL

also include logical operators =⇒ ,∨,⇔ and temporal operators ♦Iϕ|�Iϕ. ♦I stands for

the finally and �I stands for global operations. However, these can be derived from the

base MTL operations provided as such:

♦Iϕ = trueUIϕ

�Iϕ = ¬♦I¬ϕ

The input to MTL formulas are a signal (s) that can come from a simulation or a cps.

This signal (s) consists of two parts: σ, which is the set of states, and τ , which is the set of

time steps. τ and σ are the same cardinality, meaning there is a bijection between the sets.

Let i ∈ N+ where i < |τ | then the state σ[i] occurred at time τ [i]. The set τ is monotonic;

it increases in value as i increases or τ [i] < τ [i+ 1]. With s = (τ, σ) the definition of the

semantics at time step i can be given as seen in table 3.1.

This is the semantics for boolean MTL; however, it can be expanded to produce useful

information on how far away the formula is from being True or False. This is known as

MTL robustness. The first major change to the Boolean MTL semantics is that predicates

7

Table 3.1: MTL logical semantics

(s, i) |= true MTL formula is true
(s, i) |= false MTL formula is false

(s, i) |= predicate
True if the predicate is true at

time step i given signal s else false
(s, i) |= ¬ϕ True if ϕ is False at time step i else False

(s, i) |= ϕ1 ∧ ϕ2 True if ϕ1 and ϕ2 is True at time step i else False
(s, i) |= ϕ2 ∨ ϕ2 False if ϕ1 and ϕ2 is False at time step i else True

(s, i) |= �Iϕ True if ϕ is True for all i ∈ I else False
(s, i) |= ♦Iϕ False if ϕ is False for all i ∈ I else True

(s, i) |= ϕ1Uϕ2

True if there exists
j ≤ i while ϕ2 at time step j is True with

j ∈ i+ I and for all
j > k > i where ϕ1 at time step k is True

have to be changed to sets. These sets need to have a defined boundary that has a defined

distance metric. If the trace from the signal is out of the predicate set the robustness will

be the shortest distance to the boundary of the set. If the signal is a point in the predicate

set the robustness is the shortest distance to the closest point on the boundary of the set

times negative one. This distance to the boundary in the set is normally called depth. Let

X be a set with a boundary that has a distance metric defining a predicate:

predicate robustness(σ,X) =

distance(σi, X) ifσi ∈ X

−depth(σi, X) σi 6∈ X

The signed distance calculated with the predicate robustness function is then

manipulated by the other MTL operations in the formula. If the formula is ♦I(pred), pred

is calculated first before the Finally. The semantics for MTL robustness can be seen in

table 3.2. The operations ♦I ,�I , and UI need to work on a certain subset of τ . This subset

has a lower bound time step of τ [i+ I[0]] and a upper bound of τ [i+ I[1]]. If i+ I[i] is

greater than |τ | the largest index in τ is used. In these operators, the defined subset is

searched to produce the robustness for that operator and will be labeled τ ′.

The order in which these semantics are applied are different between the dp taliro [1]

8

Table 3.2: MTL robustness semantics

(s, i) |= true MTL formula is ∞
(s, i) |= false MTL formula is −∞

(s, i) |= predicate predicate robustness(si, X)
(s, i) |= ¬ϕ −ϕ(s, i)

(s, i) |= ϕ1 ∧ ϕ2 ϕ1(s, i) u ϕ2(s, i)
(s, i) |= ϕ2 ∨ ϕ2 ϕ1(s, i) t ϕ2(s, i)

(s, i) |= �Iϕ uj∈τ ′ϕ(sj, j)
(s, i) |= ♦Iϕ tj∈τ ′ϕ(sj, j)

(s, i) |= ϕ1Uϕ2

and what this paper proposes. In the dp taliro algorithm, they compute the all semantics

on that time step at once. This paper proposes to apply the semantic to all time steps

before moving up to the next semantic. For instance, if dp taliro was to calculate �I(ϕ) it

would calculate time step |τ | for ϕ and then time step |τ | for �. After computing those two

values dp taliro will move on to computing the two values for |τ | − 1 and will continue

computing two values at a time till it finishes at time step zero. More details about

calculation order can be seen in chapter three.

9

CHAPTER 4

TLTK OVERVIEW

4.1 STRUCTURE

TLTk is a python and C-based implementation of the divide and conquer algorithm to

compute MTL robustness. The main user interface is python, which allows the end user to

not have to think about memory management or parallel processing. Cython is used to

allow C and Python to talk to each other. Cython translates the python objects into C

data types. Cython is also used to talk to the CUDA library for robustness calculation on

the GPU. TLTk is passed a signal set and a set of time stamps for when those signals are

observed. These signals can be generated from a simulation or gathered from sensors.

4.1.1 Signals and System

When using TLTk for robustness calculation, two python objects need to be created

by the user:

• traces: {Python dictionary}

This is a python dictionary that is passed to TLTk at execution time. The keys of

the dictionary are strings containing the name of the signal. The data stored at the

key index is a python list. If the signal is one-dimensional then it is stored in a

one-dimensional python list list of ‖τ‖ length. If the signal has a dimension greater

than one it is stored in a two-dimensional python list.

• timestamps: {Python list}

This python list represents the set τ and has length ‖τ‖. The value at timestamps[i]

represents the time at which traces[’key’][i] was taken. TLTk assumes that all data

sets were sampled synchronously, so only one list of timestamps are needed. The time

stamps have to be stored in increasing order to get accurate robustness calculations.

10

◊

∧

¬ r2

r1

Figure 4.1: Parse Tree of MTL formula ϕ = ♦(¬r1 ∧ r2)

4.1.2 Calculation Structure

When TLTk processes MTL formulas it processes it in the structure of a tree. It is up

to the creator of the MTL operation if they give priority to left branch or right branch.

Currently, all MTL operations give priority to the left branch. Let us look at the

calculation of the MTL formula ϕ = ♦(¬r1 ∧ r2). Figure 4.1 shows how ϕ breaks down in

to the parse tree.

The first node in the tree to get processed is the leftmost leaf node, which in this case

is r1. The results are then returned to the ¬ operation, which is then processed. The

results from both sub branches are needed for the ∧ operation because it has two operands.

That means r2 is processed before the ∧ operation. After r1 and ∧ have been processed

the ♦ operation calculates its robustness.

The memory usage can be represented as a table with the rows being the memory

each sub formula uses and each column being the memory that sub formula uses at that

time step. That means there are |τ | columns and at most |ϕ| rows. In the DP taliro

algorithm, the table that stores all the values gets allocated at the start of execution. This

means the memory requirements for MTL formulas will be higher than is needed. MTL

11

Figure 4.2: Memory table of ϕ = ♦(¬r1)

operations like ∧,∨,¬ can be calculated in place without allocating memory specifically for

the operations. As a value is calculated it can be stored in the column being calculated.

Operations like ♦I ,�I , and UI need to allocate a row when performed because the results

need to be stored somewhere without changing any of the data stored in the sub formulas.

Figure 4.2 is an example of memory usage when calculating the MTL formula ♦(¬r1). The

first table is the memory usage of calculating the predicate, which requires a row for the

time stamps τ and a row for the predicate values. The second table shows the ¬ operation

overwriting the predicate values. The third table represents a row being allocated so the

results of the ♦ operation can be stored. The row containing the ¬ is deleted because it

will not be needed again.

4.1.3 Predicate Calculation

TLTk uses a modified version of the DP taliro algorithm for robustness calculation.

TLTk breaks the DP taliro algorithm into sub tasks, which then divides the work in

between threads. This allows for a significant speed up in calculation when compared to

the original DP taliro algorithm. The first computation that takes advantage of parallel

processing is the predicate distance metric calculation. This calculation finds the distance

of the current time step from the set

Ax ≤ b

12

Distance is calculated by solving the optimization problem. When a node is processed, all

time steps for that node are calculated before it moves on to the next. This is different

than the DP taliro algorithm, where it calculates all sub formulas on a time step before it

moves on.

minimize
x

||x− s||

subject to Ax ≤ b,

This minimization problem is reworked into the quadratic programming problem

With s being a n by 1 matrix representing the value of the signal at the current time

step being calculated. The n by 1 vector x is the optimizer. When the problem is solved x

will be the closet point in the set Ax ≤ b to the signal point s at that time step. TLTk uses

the Goldfarb/Idnani algorithm to solve the above quadratic programming problem.[14]

Each time steps distance is independent of each other. This means that all of time steps

can be calculated in parallel and not sequentially as seen in the DP taliro algorithm.

4.1.4 Logical MTL operations

The logical operators are ∧,∨, and ¬. When calculating these logical operators, only

one time step is looked at a time. This allows for the possibility of dividing the calculation

of all the time steps into threads. However, with most of the logical operations being very

low time complexity operations to be preformed on each time step, that might not be

worth the thread start up cost. Processing the time steps in logical operators in parallel

will only be time efficient with large trace sizes. This is so the threads can pay back the

cost of starting them. The ¬ operation is depicted in algorithm 1.

Algorithm 1: Not sub task.

1 Not (¬) subtask
Data: Robustness array not robustness

2 for i← |τ | to 0 do
3 not robustness[i]← −1 ∗ not robustness[i]

13

The ¬ takes in an array not robustness, which is the robustness calculated from the

sub formula of the not operation. It is also used to store the results of the ¬ operation in

place. In practice, not robustness would be an address to the memory in which the sub

formula robustness in stored.

The ∧ and ∨ operations are very similar to each other, with the only difference being

that ∧ takes the min and ∨ takes the max of the current time steps. The subtask

algorithms for ∧ and ∨ can be seen in algorithm 2 and algorithm 3, respectively.

Algorithm 2: And sub task.

1 And (∧) subtask
Data: Robustness array left robustness
Data: Robustness array right robustness

2 for i← |τ | to 0 do
3 left robustness[i]← min(left robustness[i], right robustness)

Algorithm 3: Or sub task.

1 Or (∨) subtask
Data: Robustness array left robustness
Data: Robustness array right robustness

2 for i← |τ | to 0 do
3 left robustness[i]← max(left robustness[i], right robustness)

4.1.5 Temporal MTL operations

The temporal operators are ♦,�, and U . To compute one time step of these

operations, other time steps must be looked at. That means the input data can not be

changed, otherwise it would produce the wrong results. When running these operations

memory specifically for the results of the operations need to be allocated.

Temporal operations algorithms and optimizations

The temporal operators have an optimization for when the formula have bounds of

I = [0,∞]. When I = [0,∞] it is possible to only look at one time or two time steps at a

14

time. This means τ and robustness will not need to be searched for values. This can be

seen in ♦ algorithm 7 in the if statement beginning on line 2 and ending on line 7. This

optimization is depicted in the dp taliro algorithm for computing robustness. However, the

TLTk ♦ operation contains two optimizations not shown in the dp taliro algorithm as far

as the author is aware. These optimizations help reduce calls to algorithms 4, 5, and 6.

Since these are inside the loop that iterates through time steps, these multiply the time

complexity of that loop. The loop iterates |τ | times; this causes a drastic increase in time

complexity. The first optimization helps to lower calls to algorithm 6. It can be seen in

algorithm 7 line 15. The if statement checks if the lower time bound is 0. If the lower time

bound is 0 there is no need to search for where the lower bound index will be because it

will always be the time step you are currently looking at. The second optimization can be

seen in algorithm 7 line 19 through 28. This optimization lowers the amount of times

algorithm 4 gets called to search all of the time steps between the time bound index. To do

this, it uses the index of the previous max in the last time step calculated. The index of

the max calculated in the previous time step is stored in max index. max index initializes

as -1, so it is easy to tell if we are processing the first time step on line 19. If it is the first

time step we have to call algorithm 4 to search the full robustness array between

lower bound index and upper bound index. However, on the next time step we can check

and see if that time step moves out of frame on line 22. If the max index is greater than

the new upper bound it has moved out of frame and the full algorithm 4 needs to be called

again with a frame being the data in the robustness array between lower bound index and

upper bound index. The frame moves backwards in time as the signal is processed.

However, if that max has not moved out of frame we only have to perform algorithm 4 on

the new data that is coming into frame, then check if the result from that call to algorithm

4 to the previous max. This can be seen in algorithms 8 and 7 lines 19 through 28, with

line 19 being the check if it is the first iteration. Line 22 checks if the current min/max

index has moved out of bounds. The default else statement on line 25 will run one of the

15

algorithms 4 or 5 on the incoming data if the max is still in frame.

Algorithm 4: find max(robustness, start, end)

Input: Robustness array robustness
Input: start number start
Input: end number end
Output: maximum index max index

1 max← robustness[0]
2 max index← 0
3 for i← start to end do
4 if max < robustness[i] then
5 max← robustness[i]
6 max index← i

7 return max index

8]

Algorithm 5: find min(robustness, start, end)

Input: Robustness array robustness

Input: start number start

Input: end number end

Output: minimum index min index

1 min← robustness[0]

2 min index← 0

3 for i← start to end do

4 if robustness[i] < min then

5 min← robustness[i]

6 min index← i

7 end

8 return min index

9 end

10]

16

Algorithm 6: search sorted(τ, start, end, time)

Input: time array τ

Input: start index start

Input: end index end

Input: Target time time

Output: Middle index middle

1 lower index← start

2 upper index← end− 1

3 middle← (lower index+ upper index)/2

4 while lower index ≤ upper index do

5 if τ [middle] < time then

6 lower index← middle+ 1

7 else if τ [middle] == time) then

8 break

9 else

10 upper index← middle− 1

11 end

12 middle = (lower index+ upper index)/2

13 end

17

Algorithm 7: Finally(I,ε,τ ,ς)

Input: Time bound array of two numbers I
Input: Robustness array ε
Input: Time Step array τ
Input: Result robustness array ς
/* If time bounds are 0 and ∞ perform cheaper calculation */

1 if I = [0,∞] then
2 max← ε[|τ |]
3 for i← |τ | to 0 do
4 if max < ε[i] then
5 max← ε[i]

6 ς[i]← max

7 else
8 maxi ← −1
9 max← −∞

10 for i← |τ | to 0 do
11 timel ← τ [i] + I[0]
12 timeu ← τ [i] + I[1]
13 indexu ← Search sorted(τ, i, |τ |, timeu)

/* Checks if search needs to be performed */

14 if I[0] == 0 then
15 indexl ← i
16 else
17 indexl ← Search sorted(τ, i, |τ |, timel)

/* Does full search on first iteration */

18 if maxi == −1 then
19 maxi ← Find max(ε, indexl, indexu)
20 ς[i]← ε[maxi]

/* check if the max has moved out of frame */

21 else if indexu < maxi then
22 maxi ← Find max(ε, indexl, indexu)
23 ς[i]← ε[maxi]

/* runs if max has not moved out of frame. Is cheaper than

running full search */

24 else
25 possible maxi ← Find max(ε, indexl, prev indexl)
26 if max ≤ ε[possible maxi] then
27 maxi ← possible maxi

28 ς[i]← ε[max index]
29 prev indexl ← indexl
30 max← ε[maxi]

18

Algorithm 8: Global(I,ε,τ ,ς)

Input: Time bound array of two numbers I
Input: Robustness array ε
Input: Time Step array τ
Input: Result robustness array ς
/* If time bounds are 0 and ∞ perform cheaper calculation */

1 if I = [0,∞] then
2 min← ε[|τ |]
3 for i← |τ | to 0 do
4 if ε[i] < min then
5 min← ε[i]

6 ς[i]← min

7 else
8 mini ← −1
9 min← −∞

10 for i← |τ | to 0 do
11 timel ← τ [i] + I[0]
12 timeu ← τ [i] + I[1]
13 indexu ← Search sorted(τ, i, |τ |, timeu)

/* Checks if search needs to be performed */

14 if I[0] == 0 then
15 indexl ← i
16 else
17 indexl ← Search sorted(τ, i, |τ |, timel)

/* Does full search on first iteration */

18 if mini == −1 then
19 mini ← Find min(ε, indexl, indexu)
20 ς[i]← ε[maxi]

/* check if the max has moved out of frame */

21 else if indexu < maxi then
22 mini ← Find min(ε, indexl, indexu)
23 ς[i]← ε[maxi]

/* runs if max has not moved out of frame. Is cheaper than

running full search */

24 else
25 possible mini ← Find min(ε, indexl, prev indexl)
26 if min ≤ ε[possible mini] then
27 mini ← possible mini

28 ς[i]← ε[min index]
29 prev indexl ← indexl
30 min← ε[mini]

19

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 HARDWARE AND SOFTWARE

All experiments were ran on the same computer that contained the following hardware

and software:

• OS:

Ubuntu 18.04

• Processor:

Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz

• GPU:

GeForce GTX 1080 Ti

• RAM:

32 GiB of DDR4 RAM @ 2666MHz

These tests were ran in a non GUI environment to help remove external programs running.

5.2 SERIAL EXECUTION VS PARALLEL EXECUTION

In this sections we will be comparing results of the parallel execution and single core

executions of TLTk. The results can be seen in table 5.1. Running robustness calculations

of one dimensional formulas seems to have the greatest impact. With the greatest

improvements see on ϕb2 and ϕb3 with the parallel version being five times faster at least.

These tests uses 12 threads that the 6 core i7 processor can provide. The formula ϕs1 shows

a small speed up when threaded but not as drastic of one. This is probably because most of

the time is spent on a slow memory copy from python to the quadratic programming solver.

20

Table 5.1: Threaded vs Unthreaded TLTk time in seconds

Size—threaded ϕb1 ϕb2 ϕb3 ϕs1
1048576 0.0020 0.0146 0.0173 1.6824
2097152 0.0035 0.0294 0.0317 3.3175
4194304 0.0074 0.0587 0.0660 6.5242
8388608 0.0141 0.1289 0.1339 13.4716
16777216 0.0271 0.2544 0.2666 26.1716
Size—Unthreaded ϕb1 ϕb2 ϕb3 ϕs1
1048576 0.0027 0.0920 0.0651 1.8909
2097152 0.0045 0.1934 0.1337 3.8003
4194304 0.0086 0.4078 0.2785 7.5991
8388608 0.0169 0.8598 0.5836 15.5394
16777216 0.0335 1.8129 1.2151 30.5196

Table 5.2: One dimensional formula list

Specification Predicates

ϕb1 = ¬(3s1) s1 : speed(t) > 160
r1 : rpm(t) < 4500

ϕb2 = ¬(3[0,1000]s1 ∧2[100,300]r1)
ϕb3 = ¬(3[0,1000]s1 ∧2[0,200](r1 ∧2(3(s1 ∧ (s1Ur1)))

5.3 TLTK VS BREACH

In this section we will look at TLTk vs breach. Breach is ran by calling matlab in

terminal and running with the no display option. The results can be seen in table 5.2 Any

cells with inf is where the program crashed. This was mostly do to a memory error due to

running out of memory on the machine. In all experiments TLTk performed faster than

breach.

21

(a) ϕb1 execution time

(b) ϕb2 execution time (c) ϕb3 execution time

Figure 5.1: One dimensional execution time(seconds)

22

(a) ϕs1 execution time (b) ϕs2 execution time

(c) ϕs3 execution time (d) ϕs4 execution time

(e) ϕs5 execution time (f) ϕs6 execution time

Figure 5.2: Higher dimensional execution time(seconds)

5.4 TLTK VS STALIRO

In this section we will be comparing Staliro to TLTk. We can see the large increase of

Staliro’s execution time in table 5.3. ϕ5 is a larger formula than ϕ3 which at 221 samples

have very different execution times. A cell marked with inf is where a crash accord. It is

uncertian why staliro crashes at higher trace sized because the computer still had plenty of

memory. In all experiments TLTk performed faster than Staliro.

23

Table 5.3: Larger Dimensional Formulas

MTL Specifications and Predicates

ϕs1 = ¬(2[5,150]r3 ∧3[300,400]r4)

where r3 : As1 ∗ x ≤
(
250 −240

)T
and r4 : As1 ∗ x ≤

(
240 −230

)T
and As1 = (1 0 0;−1 0 0)

ϕs2 = (¬p11)Up12
where p11 : As2 ∗ x ≤

(
3.8 −3.2 0.8 −0.2

)T
and p12 : As2 ∗ x ≤

(
3.8 −3.2 1.8 −1.2

)T
and As2 = (1 0 0 0;−1 0 0 0;0 1 0 0;0 −1 0 0)

ϕs3 = 2(r7 ∧3[0,100]r8)

ϕs4 = ¬(3r7 ∧2(r8 ∧2(3(r7 ∧ (r7Ur8)))))

ϕs5 = ¬(3r7 ∧2(r8 ∧2(3(r7 ∧ (r7Ur8)))) ∧3(2(r7 ∨ (r8Ur7))))

where r7 : As345 ∗ x ≤
(
1.6 −1.4 1.1 −0.9

)T
and r8 : As345 ∗ x ≤

(
1.5 −1.2 1 −1

)T
and As345 = (−1 1 0 0;0 0 −1 1) T

ϕ6 = 2p
where p : eye(10) ∗ x ≤ (14.50 14.50 13.50 14.00 13.00 14.00 14.00 13.00 13.50 14.00) T

24

CHAPTER 6

CONCLUSION AND FUTURE WORK

The developed algorithm is able to take advantage of modern parallel processing to

speed up execution time. The TLTk is able to process a large amount of data in a quick

and scalable way. This will allow for MTL robustness to be used on data sets that need to

have a large resolution of time steps or covers a large amount of time.

The main goal of the implementation of this algorithm was to find a balance between

being efficient and easily expanded. With the the main interface being python, a new MTL

operation could be added in a few lines of code. Once the new MTL operation is tested in

python it can be made more efficient with language that compiles, such as C or C++.

This work provides the essentials for MTL robustness calculation. Future additions to

this project are:

• More MTL operations with C back ends:

The current implemented code has only six officially supported operations. There are

many more MTL operations that people need.

• Add a MTL string parser:

Currently, the only way to represent MTL formulas in tltk is calling MTL objects.

There will be a parser that reads a string that represents a MTL formula and

translates it in to the python objects.

• differnt predicate types:

Currently, the only predicates that are supported are the distance between the

polyhedron Ax ≤ b and a point s. Future works will include the distance from shapes

like ellipsoids. It will also allow for the signal to not be composed of points, but

instead be composed of moving sets. This will allow the optimization problem to find

the closest two points in two different sets.

25

REFERENCES

[1] H. Yang ”Dynamic Programming algorithm for Computing Temporal Logic

Robustness”

[2] G. E. Fainekos, H. Kress-Gazit and G. J. Pappas, ”Hybrid Controllers for Path

Planning: A Temporal Logic Approach,” Proceedings of the 44th IEEE Conference on

Decision and Control, pp. 4885-4890, 2005.

[3] Sarra Alqahtani, Ian Riley, Samuel Taylor, Rose Gamble, and Roger Mailler. 2018.

MTL Robustness for Path Planning with A*. In Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’18).

International Foundation for Autonomous Agents and Multiagent Systems, Richland,

SC, 247–255.

[4] G. E. Fainekos and G. J. Pappa, ”Robustness of temporal logic specifications for

continuous-time signals Theoretical Computer Science Vol 410, Issue 42, pp. 4262 -

4291, 2009.

[5] Mishap Investigation Board, ”Mars Climate Orbiter Phase I Report” November

10,1999

[6] R. Alur and T.Henzinger. Real time logics: complexity and expressiveness. Fifth

annual symposium on logic in computer science, pages 390-401. IEEE Computer

Society Press, 1990.

[7] A. Pnueli, ”The temporal logic of programs,” 18th Annual Symposium on Foundations

of Computer Science (sfcs 1977), Providence, RI, USA, 1977, pp. 46-57.

[8] GroBe, Daniel and Drechsler, Rolf. (2003). Formal verification of LTL formulas for

SystemC designs. V-245 . 10.1109/ISCAS.2003.1206243.

[9] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled, Model Checking, MIT

Press, 1999, ISBN 0-262-03270-8

[10] S. Kirkpatrick, C. D Gelatt, Jr., M. P. Vecchi. Optimization by Simulated Annealing

Science Volume 220 pp, 4598

26

[11] A.Donze. Breach: A Toolbox for Verification and Parameter Synthesis of Hybrid

Systems. In Computer-Aided Verification pages 167-170, 2010

[12] TaLiRo Tools. [Online]. Available: https://sites.google.com/a/asu.edu/s-taliro/

[13] Y. S. R. Annapureddy. C. Liu, G. E. Fainekos and S. Sankaranarayanan. S-taliro: A

tool for temporal logic falsification for hybrid systems. In Tools and algorithms for the

construction and analysis of systems, volume 6605 of LNCS, pages 254-257. Springer,

2011

[14] D. Goldfarb and A. Idnani(1983).A numerically stable dual method for solving strictly

convex quadratic programs. Mathmatical Programming,27,1-33

[15] A. Donze and O Maler. Robust satisfaction of temporal logic over real-valued signals.

In. Chatterjee and T. A. Henzinger, editors, FORMATS, volume 6246 of Lecture

Notes in Computer Science, pages 92-106. Springer, 2010

[16] Fainekos, Georgios and Sankaranarayanan, Sriram and Ueda, K. and Yazarel, H..

(2012). Verification of automotive control applications using S-TaLiRo. Proceedings of

the American Control Conference. 3567-3572. 10.1109/ACC.2012.6315384.

27

VITA

Graduate School
Southern Illinois University

Joseph Cralley

jkolecr@siu.edu

Southern Illinois University
Bachelor of Science, Computer Science, May 2018

Thesis Paper Title:
PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICAL
SYSTEMS VERIFICATION

Major Professor: Dr. H. Hexmoor

28

	PARALLELIZED ROBUSTNESS COMPUTATION FOR CYBER PHYSICALSYSTEMS VERIFICATION
	Recommended Citation

	tmp.1596051723.pdf.aoMcu

