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AN ABSTRACT OF THE THESIS OF 

Claire Snyder, for the Master of Science degree in Zoology, presented on June 28, 2019 at  

Southern Illinois University Carbondale.  

 

TITLE: A MICROCHEMICAL ANALYSIS OF NATIVE FISH PASSAGE THROUGH  

BRANDON ROAD LOCK AND DAM, DES PLAINES RIVER, ILLINOIS 

MAJOR PROFESSOR: Dr. Gregory W. Whitledge 

Modifications to Brandon Road Lock and Dam (BRLD), located on the Des Plaines River 

in northeastern Illinois, have been proposed to prevent the upstream transfer of aquatic invasive 

species, particularly Asian carps, into the Great Lakes Basin. These modifications, including the 

installation of an electric barrier, acoustic fish deterrent, and air bubble curtain, are designed to 

completely eliminate all upstream fish passage and may negatively impact native fish 

populations in the Des Plaines River by reducing upstream movement and potentially 

fragmenting populations. BRLD is situated just 21 km upstream of the Des Plaines River mouth, 

and fish are only able to pass upstream via the lock chamber. Fish species richness within the 

Des Plaines River watershed has increased over the last 35 years. It has been suggested that the 

majority of new species to the upper Des Plaines River have migrated upstream past Brandon 

Road Lock and Dam (BRLD), from the Illinois, Kankakee, and lower Des Plaines rivers. 

However, documentation of emigration needed to support that contention is lacking and there is 

limited knowledge of the current rate of BRLD passage by native species. To assess native fish 

passage through the lock, a microchemical study was conducted using fin rays from fish 

collected from the Des Plaines, Illinois, and Kankakee Rivers. The edge of each fin ray, which 

contained the most recently deposited material, was assumed to contain a microchemical 

signature reflective of residency in the river where the fish was sampled. Fin ray edge 

strontium:calcium ratio (Sr:Ca) was used to define taxonomic and river-specific signature ranges 



 

ii 
 

for four taxonomic groups: centrarchids, catostomids, ictalurids, and lepisosteids. Fin ray edge 

Sr:Ca data were input into a random forest classification model, and the classification accuracy 

of fish to their river of capture based on their fin ray edge Sr:Ca was > 97% in each taxonomic 

group. The classification model was then applied to the entire fin ray of each fish sampled 

upstream of Brandon Road to infer retrospective environmental history. Upstream BRLD lock 

passage was suggested by the presence of Sr:Ca signatures indicative of prior downstream 

residency in the Illinois or Kankakee rivers in a fish sampled upstream of BRLD. Results 

indicated some evidence of downstream residency that suggested upstream BRLD lock passage 

for centrarchids, catostomids, ictalurids, and lepisosteids, ranging from 15 – 37% of individuals 

sampled depending on taxa. An additional 19 – 80% of individuals within each taxonomic group 

were classified as fish with uncertain downstream residency, whereby the possibility of BLRD 

lock passage could not be rejected, but there was higher uncertainty in establishing downstream 

residency in the Illinois or Kankakee rivers. The impact of BRLD modifications and passage 

restriction on Des Plaines River fish populations is unknown and merits further investigation.  
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CHAPTER 1 

A MICROCHEMICAL ANALYSIS OF NATIVE FISH PASSAGE THROUGH  

BRANDON ROAD LOCK AND DAM, DES PLAINES RIVER, ILLINOIS 

INTRODUCTION 

Riverine fish often move between different environments to satisfy life history 

requirements, including movements associated with spawning, dispersal, foraging, 

overwintering, or avoiding sub-optimal environmental conditions (Abell et al. 2018; Johnson and 

Noltie 1996; Laughlin et al. 2016; Page and Johnston 1990). Impeding fish movement with 

artificial barriers at any life stage may have consequences that range in severity. On an individual 

level, fish that are prevented or delayed from moving to optimal habitats can experience declines 

in reproductive output due to delayed spawning, spawning in sub-optimal habitats, or reduced 

energy allocated to reproduction (McLaughlin et al. 2013; Pratt et al. 2009). Survival may also 

decline if fish are unable to reach temperature, oxygen, or flow refuges during times of 

environmental stress or disturbance (McKay et al. 2013). On a population scale, loss of 

ecosystem connectivity caused by artificial barriers can isolate populations, leading to reductions 

in gene flow and access to habitats used for reproduction and making populations more 

vulnerable to disturbances or local extirpations (Graf 1999; Nislow et al. 2011; Pringle 2003). 

 Although artificial barriers can prove detrimental to native fish movement, they may 

serve an intended or unintended purpose of preventing the spread of aquatic invasive species 

(AIS) (Lubejko et al. 2017). Invasive species have been identified as one of the primary dangers 

to worldwide biodiversity (Jansson et al. 2007; McLaughlin et al. 2013) and are responsible for a 

wide range of detrimental ecological, social, and economic impacts, which in concert threaten 

native ecosystems and the interests of stakeholders that rely on them. Because river networks 
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provide only single or limited pathways for aquatic species movement versus more numerous 

mechanisms for dispersal over land or air by terrestrial organisms, the installation of artificial 

barriers at critical locations can be effective at blocking AIS movement (McKay et al. 2013). 

However, it is vital to consider the trade-offs of barriers specifically targeting AIS; resource 

managers may need to determine whether the benefits of reducing further AIS range expansion 

outweigh the impacts. Major potential negative impacts include, but are not limited to: reducing 

native species connectivity, alteration of flow regime, water quality degradation, and habitat 

degradation (Bunn and Arthington 2002; Jansson et al. 2007; Nislow et al. 2011). Improving 

river connectivity to increase the success of a certain species may also come at the cost of 

leaving the same species vulnerable to impacts of invasion (Fausch et al. 2009; McKay et al. 

2013; Rahel 2013).  

The trade-offs between native fish movement and restricting invasive species passage are 

of particular concern in the case of invasive carps from eastern Asia. Introduced to the United 

States in the 1970s for use in commercial aquaculture ponds, the fish soon escaped containment 

and began invading the Mississippi River and its tributaries (Kelly et al. 2011). In particular, 

Silver Carp Hypophthalmichthys molitrix and Bighead Carp H. nobilis, together called bigheaded 

carps, spread quickly as a result of their high fecundity, early maturity, rapid dispersal, and 

tolerance of a broad range of environmental conditions. To combat the threat of bigheaded carps 

expanding their range into the Great Lakes, the United States Army Corps of Engineers 

(USACE) installed a series of electric dispersal barriers on the Chicago Sanitary and Ship Canal, 

a man-made channel southwest of Chicago, Illinois that acts as one of the key connection points 

between the Mississippi River and Great Lakes watersheds (USACE 2014). The barriers are 

located approximately 40 km from Lake Michigan and create an electric field in the water which 



 

3 
 

acts as a deterrent to fish passage (Bryant et al. 2016). To reduce the probability of bigheaded 

carps challenging the electric dispersal barriers, a contracted harvest program was implemented 

by the Illinois Department of Natural Resources in the Illinois River and lower Des Plaines River 

with commercial fishermen, resulting in the removal of 90,469 Bighead Carp and 681,743 Silver 

Carp between 2010 and 2017 (ACRCC 2017a). Additionally, a barrier fence was constructed 

along the section of the Des Plaines River that flows parallel to the Chicago Sanitary and Ship 

Canal to prevent invasive fish from bypassing the electric barrier in the event of flooding 

(USACE 2014). 

To further reduce the possibility of upstream bigheaded carp passage along the Chicago 

Area Waterway System (CAWS) toward Lake Michigan, the USACE recommended the 

enhancement of Brandon Road Lock and Dam (BRLD) as an additional control point (USACE 

2018). Brandon Road Lock and Dam is located on the Des Plaines River approximately 16 km 

downstream of the Chicago Sanitary and Ship Canal electric dispersal barriers and at the leading 

edge of the bigheaded carp invasion front (ACRCC 2018). Completed in 1933, the dam is 728.8 

m long and 10.4 m high. Because of the height of the dam, upstream fish passage at BRLD 

occurs exclusively through the lock chamber, which is 182.9 m long and 33.5 m wide (USACE 

2017). The recommended plan, which was approved by the commanding general of USACE in 

May 2019 (USACE 2019), includes a suite of technologies designed to eliminate upstream AIS 

passage at BRLD, including the installation of an engineered channel on the downstream 

approach to the lock, an electric barrier within the engineered channel, an acoustic deterrent, an 

air bubble curtain, and a flushing lock as well as non-structural controls such as continued 

overfishing and public outreach (USACE 2018). In concert, these controls are intended to 
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prevent upstream transit of swimming and floating Mississippi River AIS while still maintaining 

navigation.  

The impact of barrier enhancement at BRLD on the movement of native fishes into the 

upper Des Plaines River is unknown but will depend on the extent to which native fishes utilize 

the lock chamber for upstream passage. Brandon Road Lock and Dam is located just 21 km 

upstream of the mouth of the Des Plaines River (USACE 2014), so any fish moving upstream to 

access the 198 km upper Des Plaines River (i.e. the portion of the river upstream of BRLD) must 

first pass through the lock chamber at BRLD (Pescitelli 2015). Upstream fish passage through 

the lock chamber at BRLD has been suggested in several reports. Acoustic telemetry studies by 

USACE detected five tagged Common Carp Cyprinus carpio moving upstream through BRLD 

from the Dresden Island Pool into the Brandon Road Pool (ACRCC 2017a). Additionally, a 2013 

Des Plaines River basin survey by the Illinois Department of Natural Resources (IDNR) 

documented 50 native fish species in the Des Plaines River upstream of BRLD, a substantial 

increase in fish species richness compared to the 28 species present in the first basin survey in 

1983. Species richness increased in each of the four basin surveys conducted between 1997 and 

2013 (Altenritter et al. 2019; Pescitelli 2015). The 2013 IDNR basin report proposed that, 

although some immigrant species could have traveled from the CAWS or Lake Michigan, it is 

more likely that new riverine species migrated from the lower Des Plaines, Illinois and Kankakee 

rivers and therefore passed upstream through BRLD (Pescitelli 2015). Due to the high efficacy 

of the electric dispersal barriers at preventing fish passage (Parker et al. 2015), immigration into 

the Des Plaines River from the CAWS would likely be reduced after the first barrier became 

operational in 2002, though some passage may still occur in small fish during barge transit 

(Davis et al. 2016; Parker et al. 2015). Although upstream BRLD passage has been proposed as a 
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mechanism for the increasing species richness in the Des Plaines River, documentation of 

emigration needed to support that contention is lacking (Pescitelli 2015).  

Microchemical analysis of calcified structures in fishes represents a potential means of 

identifying individual fish captured in the upper Des Plaines River that have passed upstream 

through the lock chamber at BRLD. This technique utilizes trace element concentrations in water 

bodies which are incorporated into calcified structures in fish like otoliths and fin rays. Hard part 

trace element concentrations are strongly correlated with ambient water trace element 

concentrations, and trace element analysis of these structures can allow for the examination of 

movement patterns and environmental history throughout a fish’s lifetime, provided the locations 

have chemically-distinct water signatures and the fish resides in the locations long enough to 

incorporate the location-specific signatures into its hard structures (Campana and Neilson 1985; 

Elsdon and Gillanders 2004; Pracheil et al. 2014). The use of fin rays for analysis has proven a 

viable non-lethal alternative to otoliths, and several studies have shown its efficacy in 

retrospectively documenting fish environmental life histories, including in the Illinois and 

Kankakee rivers (Pracheil et al. 2014; Rude et al. 2014; Smith and Whitledge 2011).  

Microchemistry has been used to infer lock and dam passage in other studies (Schaffler et 

al. 2015; Whitledge et al. 2019). Limited data indicate that requisite differences in water 

chemistry (specifically strontium (Sr):calcium (Ca) ratio) exist among the Des Plaines, Illinois, 

and Kankakee rivers (G.W. Whitledge, unpublished). In addition, Sr:Ca differences in otoliths 

from fish collected in the Des Plaines and Illinois rivers and in fin rays of fish sampled in the 

Illinois and Kankakee rivers have been reported (Smith and Whitledge 2010; Whitledge 2009). 

This suggests an ability to use microchemistry techniques to identify fish captured in the Des 

Plaines River upstream of BRLD that had previously resided in the Illinois or Kankakee rivers 
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and therefore had passed upstream through BRLD. Therefore, the objectives of the study were to 

1) identify differences in water Sr:Ca between the Des Plaines, Illinois, and Kankakee rivers and 

confirm inter-annual persistence, 2) determine whether water Sr:Ca differences between rivers 

were also reflected in fish fin rays of select native species, 3) quantify fin ray Sr:Ca signatures 

that reflected fish residency in each of the three rivers, 4) examine Des Plaines River fish 

captured upstream of BRLD for evidence of prior Illinois or Kankakee River residency and 

therefore BRLD passage, and 5) determine the relative abundance of fish captured upstream of 

BRLD that showed evidence of BRLD passage.  

METHODS 

Study area 

This study was conducted in northeastern Illinois near the confluence of the Des Plaines 

and Kankakee rivers, which forms the headwaters of the Illinois River. The study area 

encompassed 31 km of the Des Plaines River immediately upstream of BRLD, 35 km of the 

Kankakee River upstream of the Wilmington Dam, and 18 km of the Illinois River downstream 

of Dresden Island Lock and Dam (Figure 1). The Des Plaines River study reach extended from 

BRLD to the site of the former Hofmann Dam, which was removed in 2012. The Illinois River 

study reach encompassed the Marseilles pool, and its uppermost extent at Dresden Island Lock 

and Dam is located approximately 2.4 km downstream of the confluence of the Des Plaines and 

Kankakee rivers. The upstream extent of the Kankakee River study reach was marked by the 

Kankakee Dam and the downstream extent was at the Wilmington Dam, located approximately 

16.7 km upstream of the river mouth and confluence with the Des Plaines River.  

Fish were not sampled between BRLD, Wilmington Dam, and Dresden Island Lock and 

Dam. This was done for multiple reasons. First, an anticipated inability to distinguish between 
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Des Plaines Sr:Ca water signatures upstream vs downstream of BRLD meant that only fish 

captured upstream of BRLD could be used to confirm lock passage events, as a fish sampled 

from downstream of BRLD that contained evidence of residency in the Illinois or Kankakee 

rivers may or may not have ever been upstream of BRLD. Secondly, the goal of collecting fish 

from the Illinois and Kankakee rivers was to establish resident Sr:Ca signatures for each river, 

which would be compared to Des Plaines signatures of residency established by sampling 

upstream of BRLD. Keeping two dams between each study reach increased the likelihood of 

encountering Illinois and Kankakee resident fish and reduced the probability of finding recent 

immigrants with different Sr:Ca signatures which could confound the ability to define true Sr:Ca 

signatures of residency for each reach.  

The Des Plaines River flows 214 km from southeast Wisconsin to northeast Illinois, 

where it changes from a small forested stream to a suburban river and ultimately to an industrial 

waterway. Its mean annual discharge is approximately 108 m3/s at 25 km from the mouth (U.S. 

Geological Survey 2019a). Although some reaches of the Des Plaines River are relatively 

unaltered and protected within preserves, many have experienced heavy development. It is a low 

gradient stream whose fish assemblage is characterized primarily by cyprinids, centrarchids, and 

cyprinodontids, as well as substantial numbers of catostomids and ictalurids (Pescitelli 2015). 

The Des Plaines River shares dozens of species in common with the neighboring Illinois and 

Kankakee rivers, including centrarchids, catostomids, ictalurids, and lepisosteids (Benke and 

Cushing 2011; Pescitelli 2015; Pescitelli and Widloe 2017).  

The Kankakee River flows 214 km from northwestern Indiana to northeastern Illinois, 

with a discharge of approximately 138 m3/s at 17 km from the river mouth (U.S. Geological 

Survey 2019b). Though the agricultural Indiana section has been highly channelized, the 95 km 
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Illinois section, though dammed in places, has been relatively unaltered in comparison, with little 

change in the fish assemblage or water quality since 1975 (Pescitelli and Widloe 2017). 

Conversely, the entire 439 km Illinois River has been highly modified. With a mean annual 

discharge of 649 m3/s at 100 km from the river mouth (Benke and Cushing 2011), the Illinois 

River is a larger order river than the Des Plaines and Kankakee and is maintained for commercial 

shipping though its extent. The Illinois River has seen significant increases in native fish species 

richness from 1957 to 2009 as well as significant increases in mean relative fish abundance from 

1976 to 2009 (McClelland et al. 2012). These improvements have been attributed to wastewater 

treatment, habitat enhancement projects, and increased water quality regulation following the 

passage of the Clean Water Act in 1972 (Gibson-Reinemer et al. 2017; Parker et al. 2016). This 

followed decades of low fish diversity and abundance after the opening of the Sanitary and 

Shipping Canal and the rerouting of pollution and wastewater effluent from the CAWS 

beginning in 1900 (McClelland et al. 2012).  

Water and fish sampling 

Water samples for strontium and calcium were collected at least every other month at 

sites on the Des Plaines, Kankakee, and Illinois rivers in October 2017 and between April and 

October 2018 (Figure 1). Water sampling locations on the Des Plaines River included sites 

upstream and downstream of BRLD. Each water sample was collected in a 20 ml vial using acid-

cleaned polypropylene syringes with a Whatman Puradisc 0.45 µm polypropylene filter using 

methods described in Shiller (2003) and refrigerated until analysis. Additional water data were 

used from previous samples collected using the same methods between 2013 and 2017 and were 

included in the analysis (G.W. Whitledge, unpublished).  
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Fish were collected using 60 pulse per second (pps) DC boat electrofishing and gill nets 

(76.2 mm, 88.9mm, 101.6mm, 108 mm, and 127mm mesh) in October 2017 and April-

November 2018 (Figure 1). The following species were selected for study: Smallmouth Buffalo 

Ictiobus bubalus, Bigmouth Buffalo Ictiobus cyprinellus, Black Buffalo Ictiobus niger, River 

Carpsucker Carpoides carpio, Quillback Carpoides cyprinus, Largemouth Bass Micropterus 

salmoides, Smallmouth Bass Micropterus dolomieu, Channel Catfish Ictalurus punctatus, and 

Longnose Gar Lepisosteus osseus. Each of these species has been documented in each of the 

three study rivers; however, only Largemouth Bass and Smallmouth Bass were documented 

upstream of BRLD by IDNR in 1983 and even then, Smallmouth Bass abundance was low 

(Pescitelli 2015), suggesting that most of the target species may have entered the upper Des 

Plaines after 1983 by passing through the BRLD lock from the Illinois or Kankakee rivers. None 

of the catostomid or lepisosteid target species have been documented upstream of the site of the 

former Hofmann Dam (Pescitelli 2015). Target species were determined following discussions 

with IDNR personnel after examining trends in fish species richness and abundance data over 

multiple Des Plaines River basin surveys (S. Pescitelli, personal communication). 

 Total length and capture location were recorded for each fish sampled. Using pliers, the 

left leading pectoral fin ray of each fish was removed by making a transverse cut across the fin 

ray as proximal to the fish’s body as possible (Abell et al. 2018; Rude et al. 2014). For Channel 

Catfish, the articulating process was removed with the spine. Fin rays were stored in scale 

envelopes until laboratory analysis. After fin ray removal, each fish was released at its capture 

location. Fish sampling and fin ray collection procedures were conducted in accordance with 

Southern Illinois University Institutional Animal Care and Use Committee protocols 15-009 and 

18-010.  
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Laboratory analysis 

Water samples were sent to the Center for Trace Analysis at the University of Southern 

Mississippi. Samples were acidified to pH 1.8 using ultrapure (Seastar Basline) HCl and allowed 

to sit for at least one week. Samples were then diluted 11x in ultrapure (Seastar Baseline) 0.16 M 

HNO3, which contained 2 ppb scandium, indium and thorium as internal standards. External 

certified reference standards were also prepared using the same HNO3 used for sample dilutions. 

Samples were analyzed for strontium and calcium concentrations using a Thermo-Finnigan 

Element 2 (Thermo Fisher Scientific, Waltham, MA, USA) inductively coupled plasma mass 

spectrometer. Elemental concentrations were converted to Sr:Ca ratios (mmol/mol).  

Fin rays were embedded in Epo-fix epoxy (Electron Microscopy Sciences, Hatfield, PA) 

and sectioned in the transverse plane along the base of the fin ray using a low-speed ISOMET 

saw (Buehler Inc., Lake Bluff, IL) to a thickness of 0.7 mm. Channel Catfish spines were 

sectioned across the articulating process rather than the base of the spine, as spines more 

frequently contain a central lumen, resulting from reabsorption of bone grown during early life; 

thus, fin rays containing a central lumen will not contain a complete record of the fish’s 

environmental history (Tzadik et al. 2017). Fin ray sections were sanded using 800 and 1000 grit 

sandpaper wetted with deionized water and polished with lapping film to expose the fin ray core 

and annuli. Sanded and polished sections were mounted on acid-washed glass microscope slides 

with double-sided tape and stored in acid-washed polypropylene Petri dishes until analysis for 

elemental concentrations (Norman 2013; Smith and Whitledge 2011).  

 Concentrations of Sr and Ca in fin ray sections were analyzed using a Thermo X-Series 2 

inductively coupled plasma mass spectrometer paired with an LSX-266 laser (CETAC 

Technologies, Omaha, NE). A transect was ablated along each fin ray or spine section from the 
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core (the area reflecting early life history) to the edge (which contains the most recently accrued 

material) using a beam diameter of 25 μm, a scan rate of 5 μm/s, a pulse rate of 10 Hz, an energy 

level of 35%, and a 40 second gas blank before and after each sample. Reference materials with 

a CaCO3 matrix (MACS-3, United States Geological Survey) and a bone meal standard (NIST 

1486, National Institute of Standards and Technology) were run every 10-20 samples to correct 

for potential instrument drift. Elemental concentrations of Sr and Ca were calculated from 

isotopic counts of Ca43 and Sr86 and were converted to Sr:Ca ratios (mmol/mol) in relation to 

distance (µm) along the laser transect using Microsoft Excel macros. Sr:Ca data along the laser 

transect were smoothed using a 25 µm increment moving average (Allen et al. 2009).  

Statistical analysis 

To detect fish movement among rivers using hard part chemistry, persistent differences in 

water chemistry must exist among study rivers. Therefore, differences in mean water Sr:Ca 

among rivers using water Sr:Ca data from 2013-2018 were assessed using a generalized linear 

model (gamma distribution, log link) followed by Tukey’s adjusted pairwise comparisons. Water 

chemistry data from sites in the upper Des Plaines and the lower Des Plaines were compared to 

determine whether water Sr:Ca differed upstream and downstream of BRLD.  

To assess lock passage by fish captured in the Des Plaines River upstream of BRLD 

using fin ray Sr:Ca, it was necessary to define river-specific fin ray Sr:Ca ranges to allow for 

interpretation of the record of a fish’s environmental history contained within its fin ray. To 

characterize river-specific Sr:Ca fin ray signatures, mean Sr:Ca from the outermost 25 μm of the 

laser ablation transect across the sectioned fin ray from each fish was assumed to represent a 

Sr:Ca signature indicative of residency of the river where the fish was captured (Smith and 

Whitledge 2011; Zeigler and Whitledge 2010). This number was chosen as it represents the 
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beam diameter of the laser and therefore the minimum possible resolution for distance along the 

transect. Species within the same family were combined for analysis (Smith and Whitledge 2011, 

Rude et al. 2014, Laughlin et al. 2016), resulting in four different taxonomic groups: a 

catostomid group composed of carpsuckers and buffaloes; a centrarchid group composed of 

Smallmouth Bass and Largemouth Bass, an ictalurid group composed of Channel Catfish, and a 

lepisosteid group composed of Longnose Gar. 

A generalized linear mixed model (glmm) (gamma distribution, log link) with fixed 

effects of taxonomic group, river of capture, and their interactions and a random effect of 

individual fish was used to estimate mean edge Sr:Ca for each fish (Kéry 2010). Input to the 

model consisted of the five smoothed Sr:Ca values that comprised the final 25 μm of the transect 

of each individual fish and the fish’s taxonomic group and river of capture, and the model output 

was a single modelled Sr:Ca mean edge value for each fish. A dispersion formula (taxonomic 

group*river + river) was applied to meet assumptions of normality. The glmm was utilized rather 

than simply taking an average of Sr:Ca values across the last 25 μm of each fish transect in order 

to provide a better estimate of the central tendency of the values within the last 25 µm of each 

transect and because the smoothed fin ray edge Sr:Ca values were not normally distributed in 

several river and taxonomic groupings both within and across individuals.  

To characterize a Sr:Ca signature range for resident fish from each river, outliers were 

identified and removed from each taxonomic group after the predictive edge model was run 

using an upper range of the seventy-fifth percentile of the modelled fin ray edge Sr:Ca means 

plus 1.5 * the interquartile range, and a lower range of the twenty-fifth percentile of the modelled 

fin ray edge Sr:Ca means minus 1.5 * the interquartile range (Navidi 2008). This was done to 

account for the influence of fish in each river that may have been recent immigrants, which may 
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not have had time to accrue a Sr:Ca fin ray edge signature reflective of residency and therefore 

may contribute Sr:Ca signatures inconsistent with their river of capture. After outliers were 

removed, the generalized linear mixed model used above was run a second time to predict mean 

edge Sr:Ca for each fish, again using the input of multiple Sr:Ca values from the edge of the fin 

ray.  

The generalized linear mixed model performed after outlier removal was followed by 

Tukey’s adjusted pairwise comparisons to examine differences in mean fin ray edge Sr:Ca 

among taxonomic groups and rivers. Pairwise comparisons indicated that there were differences 

among taxonomic groups, but those differences were not consistent by river of capture. While fin 

ray edge Sr:Ca differed significantly among the three rivers within each taxonomic group, it did 

not always differ in the same river among taxonomic groups, or between different taxonomic 

groups in different rivers. Therefore, the classification model groupings were subsequently 

developed by individual taxonomic group rather than by combining all taxonomic groups.  

Random forest classification (Breiman 2001) was performed in order to assess 

classification accuracy of assigning individual fish to the river in which they were collected 

using mean fin ray edge Sr:Ca. The training data set utilized edge data from all fish collected 

from each of the three study rivers. The predicted mean fin ray edge values for each fish were 

used as the independent variable, and river of capture designations for each fish were used as the 

dependent a priori grouping (i.e., response variable). Prior to use in the classification model, the 

river of capture designation for Illinois and Kankakee fish was combined into a single category. 

This simplified classification into Des Plaines River vs Illinois-Kankakee categories, as it was 

not necessary to determine specific river residency downstream of BRLD. Within each 

taxonomic group, some overlap in Sr:Ca signature between Des Plaines River and Illinois-
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Kankakee was present even after the removal of outliers (i.e. potential recent immigrants). 

Therefore, any fish with an edge Sr:Ca signature in the overlap zone was reclassified with a river 

of capture designation of “uncertain”. This ultimately resulted in three possible river of capture 

designations in the model: Des Plaines River, Illinois-Kankakee, and uncertain.  

Four hundred trees were generated for each taxonomic group using aggregated bootstrap 

sampling of the training data. “River of capture” was used as a single node. Within each tree, the 

model used the bootstrapped sample to predict (i.e., classify to river of capture) the data not 

included in the bootstrap and generated an out-of-bag (OOB) error, which indicated the ability of 

the tree to appropriately classify a fish back to its correct river of capture designation based on its 

predicted edge Sr:Ca signature. The OOB errors from each of the 400 trees were aggregated into 

a single OOB estimate of error rate, which was used to assess the overall classification accuracy 

of the model (Liaw and Weiner 2002).  

To identify individual fish captured upstream of BRLD that showed evidence of upstream 

passage, fin ray Sr:Ca data from entire individual fish transects (i.e., test data set) were input into 

each taxonomic group’s specific random forest classification model, which then provided river 

classifications for the entire life history of each fish captured in the Des Plaines River upstream 

of BRLD. In reviewing Des Plaines fish classifications for Illinois-Kankakee Sr:Ca signatures 

that indicated upstream BRLD passage, a continuous Illinois-Kankakee Sr:Ca signature of at 

least 35 μm was required in order to suggest that a fish had passed upstream. This minimum 

threshold was selected to avoid spurious inferences of movement based on single or very few 

data points; a consistent signature of that length was long enough to suggest that the signature 

was not machine error and was also slightly higher than the 25 µm minimum resolution in which 

a precise estimate of Sr:Ca could be obtained based on the scan rate (5 µm/s), beam diameter (25 
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µm) of the laser, and the time interval between data points (~0.5 s). A fish with an Illinois-

Kankakee Sr:Ca signature of fewer than 35 μm or containing an uncertain Sr:Ca signature of 35 

μm or greater was classified as a fish with uncertain downstream residency. Fish with 

exclusively Des Plaines River Sr:Ca signatures or uncertain Sr:Ca signatures of 35 μm or fewer 

were classified as fish without evidence of passage. Relative frequencies of fish classified into 

each passage category (i.e., evidence suggesting passage, uncertain downstream residency, and 

no evidence of passage) were calculated for each taxonomic group.  

Fish collected in the Illinois and Kankakee rivers were not assessed for upstream BRLD 

passage. It was not possible to identify BRLD passage (upstream or downstream) for fish caught 

in the Illinois or Kankakee rivers due to an anticipated (and later confirmed) lack of difference in 

water Sr:Ca in the Des Plaines upstream and downstream of BRLD. If a fish sampled in the 

Illinois or Kankakee rivers contained Sr:Ca values indicative of prior residency in the Des 

Plaines River, it would not be possible to determine whether that individual had been upstream 

or downstream of BRLD during the time(s) that it was in the Des Plaines River. However, 

detection of Illinois-Kankakee Sr:Ca signatures in fish collected in the Des Plaines River 

upstream of BRLD would provide confirmation of upstream passage. Therefore, the 

determination of upstream BRLD passage depended on both the collection location of the fish 

(i.e., upstream of BRLD) as well as the presence of Illinois-Kankakee signatures earlier in the 

fish’s life history.  

All statistical analyses were performed using R Studio (R version 3.5.1, R Core Team 

2018). Package glmmTMB (Brooks et al. 2017) was used to model the mean edge value for fish, 

and package randomForest (Liaw and Wiener 2002) was used to build and run the random forest 
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classification model. All assumptions of parametric statistics were assessed and met or 

addressed, and all statistical analyses were evaluated at α = 0.05. 

RESULTS 

Water chemistry  

 The Des Plaines River had the highest mean water Sr:Ca (1.988 ± 0.072 mmol mol-1 

[mean ± SE]), the Kankakee River had the lowest mean Sr:Ca (0.949 ± 0.020 mmol mol-1), and 

the Illinois River had an intermediate mean water Sr:Ca (1.564 ± 0.087 mmol mol-1) (Figure 2). 

The upper and lower Des Plaines River had similar Sr:Ca (upper Des Plaines: 1.981 ± 0.097 

mmol mol-1 [mean ± SE], lower Des Plaines: 2.01 ± 0.047 mmol mol-1), and Tukey’s adjusted 

pairwise comparisons indicated that mean water Sr:Ca did not differ between the two Des 

Plaines River reaches (z ratio = 0.191, P = 0.998). All other pairwise comparisons among rivers 

were statistically significant (z ratio = 3.019 – 12.171, P ≤ 0.014 for all pairwise comparisons). 

Although the Des Plaines, Illinois, and Kankakee rivers had significantly different mean water 

Sr:Ca, ranges of water Sr:Ca for the Des Plaines and Illinois rivers partially overlapped (Figure 

2).  

Fin ray edge chemistry relationships 

 A total of 458 fish were collected, including 208 centrarchids, 127 catostomids, 75 

ictalurids, and 48 lepisosteids (Table 1). Sixteen fish (eight centrarchids, four catostomids, and 

four lepisosteids) were identified as outliers based on their fin ray edge Sr:Ca and were removed 

from models used to define river-resident signatures (i.e., glmm for mean fin ray Sr:Ca edge 

value estimation and subsequent random forest training datasets). The centrarchids included two 

Des Plaines fish, three Illinois fish, and three Kankakee fish; the catostomids included one 

Illinois fish and three Kankakee fish; and the lepisosteids included one Des Plaines fish and three 
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Kankakee fish. Differences in mean estimated fin ray edge Sr:Ca among rivers followed a 

similar pattern as water Sr:Ca, with the highest fin ray edge Sr:Ca in Des Plaines River-captured 

fish, the lowest fin ray edge Sr:Ca in Kankakee River fish, and intermediate fin ray Sr:Ca in 

Illinois River fish (Table 2). As with water Sr:Ca, there was some overlap in the range of fin ray 

edge Sr:Ca data between fish from the Des Plaines and Illinois rivers in each taxonomic group. 

In the centrarchids, there was also partial overlap in the ranges of fin ray edge Sr:Ca for Des 

Plaines River and Kankakee River fish.  

 Tukey’s adjusted pairwise comparisons indicated some separation of mean fin ray edge 

Sr:Ca among taxonomic groups and rivers (Figure 3). Within each taxonomic group, mean fin 

ray edge Sr:Ca consistently differed among the three rivers (t ratio = 4.155 – 20.326, P ≤ 0.002 

for all pairwise comparisons). However, mean fin ray edge Sr:Ca within each river differed 

significantly for some pairs of taxonomic groups, but not others. Additionally, mean fin ray edge 

Sr:Ca for a taxonomic group in a particular river did not always differ significantly from mean 

fin ray edge for another taxonomic group from a different river. Because of this, fin ray edge 

Sr:Ca data from each of the taxonomic groups were analyzed separately in subsequent 

classification models and assessment of upstream lock passage. 

 Random forest classification  

 Prior to testing the random forest models for accuracy of assigning fish to their river of 

capture, 129 (of 200) centrarchids, 21 (of 123) catostomids, 8 (of 75) ictalurids, and 6 (of 44) 

lepisosteids were a priori reclassified with a river of capture designation of “uncertain” due to 

their mean estimated fin ray Sr:Ca edge signature falling within the fin ray Sr:Ca overlap zone of 

the Des Plaines and Illinois-Kankakee classification categories. The random forest classification 

model for each taxonomic group assigned fish to their river of capture based on estimated fin ray 
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edge values with a high degree of accuracy (Table 3). The overall OOB estimates of error rate 

for centrarchids, catostomids, ictalurids, and lepisosteids were 1.5%, 1.6%, 2.7%, and 2.3%, 

respectively. Errors in classification were produced exclusively from incorrect assignments 

regarding the uncertain category; no Des Plaines River fish were misclassified as Illinois-

Kankakee or vice versa. 

 Assessment of upstream BRLD passage in Des Plaines River fish 

 Fin ray Sr:Ca data from 200 fish captured in the Des Plaines River upstream of BRLD 

were examined for evidence of prior occupancy of the Illinois or Kankakee rivers by these 

individuals, including 114 centrarchids, 25 catostomids, 41 ictalurids, and 20 lepisosteids. Any 

Des Plaines River fish previously removed as outliers based on mean fin ray edge Sr:Ca (i.e., in 

the glmm for mean fin ray Sr:Ca edge value estimation and random forest training data) were 

included for analysis (three centrarchids and one lepisosteids). These fish were removed due to 

unusual fin ray edge Sr:Ca signatures and were therefore not appropriate to use to characterize a 

Des Plaines River Sr:Ca fin ray signature of residency but, as potential recent immigrants, were 

important to include in the assessment of potential upstream lock passage at BRLD. Some 

individuals in each taxonomic group contained consistent Illinois-Kankakee Sr:Ca signatures in 

their life history that suggested upstream BRLD lock passage, ranging from 15% (lepisosteids) to 

37% of individuals (ictalurids) (Figure 4). Of the 114 centrarchids that had Sr:Ca signatures 

suggesting lock passage, 33% were Smallmouth Bass and 67% were Largemouth Bass. Of the 

seven catostomids that had Sr:Ca signatures suggesting lock passage, 57% were River 

Carpsuckers, 29% were Smallmouth Buffaloes, and 14% were Bigmouth Buffaloes. Most fish 

classified as passers had one or more sections of the laser ablation transect with a consistent 

Illinois-Kankakee Sr:Ca signature that was much longer than the 35 µm minimum. Indeed, some 
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fish had consistent Illinois-Kankakee designations for the majority of the laser ablation transect, 

up to 865 µm. In fact, 90% of centrarchids, 86% of catostomids, 87% of ictalurids and 100% of 

lepisosteids that had evidence suggesting upstream passage had consecutive Illinois-Kankakee 

signatures that exceeded, rather than simply met, 35 µm in length.  

Additional fish from each taxonomic group were classified as fish with uncertain 

downstream residency (Figure 4). The range of fish classified as uncertain downstream residency 

was much broader than that of fish with evidence suggesting passage, ranging from 19% 

(ictalurids) to 80% of individuals (catostomids). The percentages of fish classified as uncertain 

downstream residency in each taxonomic group did not necessarily reflect the size of the 

uncertain zone: centrarchids had double the degree of overlap between Des Plaines and Illinois-

Kankakee compared to catostomids but a much lower percentage of uncertain downstream 

residency classifications (32% and 80% for centrarchids and catostomids, respectively).  

DISCUSSION 

BRLD passage 

 Even when considering the lowest estimates of passage, all taxonomic groups contained 

individuals with Illinois-Kankakee Sr:Ca signatures that suggested upstream BRLD passage. 

This is the first evidence suggesting upstream passage through BRLD for all of the study’s 

taxonomic groups, though it has been suggested by previous IDNR basin surveys, which 

recorded the presence of new species in the upper Des Plaines River which likely passed upriver 

through the BRLD lock (Pescitelli 2015). Although lock passage has not been documented in 

native species at BRLD prior to this study, several of the target species in this study have been 

reported passing through lock and dam structures elsewhere on the Illinois Waterway and Upper 

Mississippi River System (UMRS), of which BRLD is a part (ACRCC 2017b; Tripp et al. 2014; 
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Wilcox et al. 2004). Wilcox et al. (2004) identified Bigmouth Buffalo, Smallmouth Buffalo, 

Channel Catfish, Largemouth Bass, and Smallmouth Bass as species known to move through 

UMRS dams, and Longnose Gar and Quillback Carpsuckers were identified as probable 

migrants within the system. Later studies examined passage specifically through UMRS lock 

chambers and found evidence of upstream lock passage in Bigmouth Buffaloes, among other 

native species not included in this study (ACRCC 2017b; Tripp et al. 2014). Lock passage has 

been observed to occur less frequently than dam passage in some lock and dam structures along 

the Illinois Waterway and UMRS, including Lock and Dam 26 on the Mississippi River and 

Starved Rock Lock and Dam on the Illinois River (ACRCC 2017b; Lubejko et al. 2017; Tripp et 

al. 2014); this may stem from additional difficulties associated with lock passage, including 

turbulent flow, lack of directional flow to orient fish to upstream, and irregularity in frequency 

and timing of lock operations (Wilcox et al. 2004). However, fish have also been shown to use 

the lock chamber for upstream movements at structures where it is the only available option: 

multiple species have been observed passing upstream through the lock chamber of Lock and 

Dam 19 on the Mississippi River, which, like at BRLD, is the exclusive means of upstream 

transit (ACRCC 2017b).  

 Species within each of the taxonomic groups in this study have been documented making 

intentional upstream migrations of varying distances, often associated with movement into 

smaller tributaries and backwaters for spawning or movement between seasons (Butler and Wahl 

2011; Cooke et al. 2005; Curry and Spacie 1984; Johnson and Noltie 1996; Langhurst and 

Schoenike 1990; Lucas and Baras 2001; Pellett et al. 1998). These migrations suggest a possible 

motivation to challenge and pass through locks and dams, including BRLD. Despite biological 

motivations and studies that have reported upriver movements, only a few studies have examined 
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lock passage in some of the study target species. This is a topic in need of further study, which 

could help to assess factors influencing passage rates at BRLD and elsewhere. 

Microchemistry as a tool  

 The underlying differences in water Sr:Ca between the three study rivers were reflected 

in the fin ray Sr:Ca signatures of fish in the study and followed the same trends reported in prior 

studies (Smith and Whitledge 2010; Whitledge 2009). The intermediate water and fin ray Sr:Ca 

signatures in the Illinois River reflect the river’s source at the confluence of the high-Sr:Ca Des 

Plaines River and the low-Sr:Ca Kankakee River. Despite some overlap in water and fin ray 

Sr:Ca signatures, fish fin ray Sr:Ca within each taxonomic group consistently separated 

significantly among all three rivers based on the Tukey groupings. These differences enabled the 

use of microchemistry as an effective tool to retrospectively infer fish residencies and 

movements among the study rivers. In particular, the use of microchemistry facilitated the 

examination of lock passage using a larger sample size of fish from within a larger geographic 

distribution than would have been possible in a short time frame with other approaches like 

telemetry, which requires costly receiver arrays and transponders and may take many years to 

acquire the amount of data that a single fin ray can provide when analyzed with microchemistry. 

Microchemistry, though it necessitates complex laboratory analysis, requires minimal tools in the 

field, can track lock and dam passage without the need to sample directly at the lock site, and can 

provide many years of data from a single sampling event.  

 The similarity of Des Plaines water Sr:Ca signatures upstream and downstream of BRLD 

precluded a number of other analyses associated with passage. Passage events could not be 

linked to age: the age that a fish acquired a Des Plaines signature would only indicate residency 

in the river, and not necessarily BRLD passage, as a fish may reside in the lower Des Plaines 
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River for an unknown amount of time prior to passing upstream of BRLD. Similarly, the number 

of passage events could not be assessed, as a fish moving past BRLD multiple times may acquire 

signatures of the Illinois or Kankakee if it moved downstream for a sufficient period of time, or it 

may only have a static Des Plaines signature if it stayed within the river. Furthermore, analysis 

by natal origin was untenable, as a fish identified with a natal origin of Des Plaines could have 

originated upstream or downstream of BRLD.  

 In this study, the use of microchemistry to distinguish movement patterns was applicable 

across taxa. However, differing relationships among taxonomic groups within each river 

necessitated separate analysis by taxa rather than a combined analysis using all fish. The ability 

to jointly analyze taxa varies by study, with some studies reporting no difference between taxa 

(Rude et al. 2017; Zeigler and Whitledge 2010), and others requiring separate analysis (Hamer 

and Jenkins 2007; Swearer et al. 2003). This may be due in part to the fact that some species 

incorporate Sr:Ca signatures into their fin rays differently than others (Campana 1999). 

Therefore, any study that examines multiple taxa should test for differences amongst taxa prior 

to analysis. 

 Though water and fin ray chemistry signatures differed among the three study rivers, they 

were not completely distinct. While the differences among rivers were almost certainly driven by 

differing geology of the Des Plaines and Kankakee watersheds (Pracheil et al. 2014), variability 

of Sr:Ca (as evidenced by water Sr:Ca standard error) within the Des Plaines River, and the 

Illinois River downstream by extension, resulted in some overlap in the range of water Sr:Ca 

among rivers. It is possible that the variability in the Des Plaines was driven by changes in river 

discharge; additional water samples are needed throughout the Des Plaines River watershed in 

future years across multiple seasons and flows to determine water chemistry patterns with higher 
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resolution. An additional source of overlap between fin ray Sr:Ca river signatures could stem 

from the presence of recent immigrants in the sample, which may bias the characterization of 

river-specific Sr:Ca fin ray signatures. All efforts were made to remove outlier fish from the 

glmm for mean fin ray Sr:Ca edge value estimation and the training datasets for the random 

forest classification, but without knowing if a collected fish has been in an area long enough to 

obtain a resident Sr:Ca signature, it is possible that some non-resident fish were included in the 

data. The length of time needed to acquire a signature of residency in a fin ray is variable and 

depends on the fish’s growth rate, which can be influenced by a number of physiological and 

environmental factors including age, temperature, and condition (Hamer and Jenkins 2007; 

Morais and Daverat 2016; Sturrock et al. 2015).  

Despite overlap in signatures, the random forest model was able to classify fish in the 

training dataset to their correct river of capture with at least 97% classification accuracy across 

all taxa. The addition of the uncertain category reflecting the fin ray overlap zone greatly 

increased classification accuracies and is suggested for use in microchemistry-based 

classification models in systems where microchemical signatures in water bodies are distinct, but 

not completely so. The combination of the Illinois and Kankakee rivers into a single category 

also increased the classification accuracy of the random forest model, as it no longer had to 

contend with any overlap between the Illinois and Kankakee Rivers. The combining of 

downstream rivers did preclude additional examination of specific river downstream residency; 

however, given the overlap between rivers (i.e. the presence of the uncertainty category), it is 

unlikely this could have been examined with sufficient resolution to draw conclusions. The error 

in classifying fish to river of capture suggests that the error in classifying retrospective 

environmental history for fish caught in the Des Plaines River was likely of similar magnitude. 
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However, because the OOB error of classification was less than 3% across taxonomic groups, the 

evidence suggesting passage or lack thereof was probably not substantially affected by this low 

level of classification error. Additional techniques that are often used in microchemistry studies 

to provide increased resolution and distinction of river signatures where overlap exists (i.e. stable 

isotope analysis or the use of additional trace elements) were not applied in this study due to 

limited differences between study rivers or the inability for other markers to provide additional 

differentiation (Whitledge 2009).  

 Other rivers in the area could act as potential sources of fish to the Des Plaines River. The 

CAWS is the nearest system, entering the Des Plaines River upstream of BRLD. The CAWS and 

Lake Michigan, which flows into the CAWS in multiple locations, have intermediate Sr:Ca 

signatures between the Des Plaines and Illinois rivers (Whitledge 2009, and unpublished) 

Therefore, intermediate fin ray signatures might be expected in fish traveling from the CAWS, 

which could confound estimates of passage, as fish would not have to pass through BRLD to get 

into the Des Plaines River from the CAWS. However, it is unlikely that fish from the CAWS 

substantially contributed to estimates of fish with evidence suggesting passage. First, the 

Chicago Sanitary and Ship Canal electric dispersal barriers are located approximately 9.6 km 

upstream of the confluence of the CAWS with the Des Plaines River. These barriers are in place 

to prevent fish passage, though some small fish may be able to pass under certain conditions 

(Davis et al. 2017; USACE 2014). The Lockport Lock and Dam is also located on the CAWS 1.6 

km upstream of the confluence with the Des Plaines and may act as an additional barrier, though 

telemetry studies have indicated some downstream fish passage through the structure as well as 

the adjacent Lockport Controlling Works (ACRCC 2017a). Fish surveys by the Illinois 

Department of Natural Resources have documented all target species in this study in the CAWS 
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upstream of the electric barriers, and all target species except Bigmouth Buffalo, River 

Carpsucker, and Quillback Carpsucker in the Lockport Pool (ACRCC 2017a). However, given 

the intermediate water Sr:Ca signatures in the CAWS, it is likely that any fish from the CAWS 

would have fin ray Sr:Ca signatures that fell within the overlap zone between the Des Plaines 

and Illinois-Kankakee and would therefore be classified as uncertain. Thus, it is possible that a 

limited number of CAWS fish contribute to the estimates of fish with uncertain downstream 

residency but less likely they would be included as fish with clear, consistent Illinois-Kankakee 

signatures that suggested downstream residency and upstream passage.  

 Other nearby rivers include the DuPage River, a tributary to the Des Plaines River 

downstream of BRLD, and the Fox River, a tributary to the Illinois River. The DuPage River has 

water chemistry Sr:Ca intermediate of the Kankakee and Illinois rivers (Whitledge 2009, and 

unpublished); therefore, any fish passing from the DuPage River into the Des Plaines River 

would likely contain signatures consistent with the Illinois-Kankakee category and appropriately 

classified as fish with evidence suggesting passage. The Fox River has the highest water Sr:Ca of 

any regional river (Whitledge 2009) which would be expected to result in fish residing in the Fox 

River having similarly high fin ray Sr:Ca as Des Plaines River fish. However, since the 

confluence of the Fox River with the Illinois River is 53 km from the source of the Illinois River, 

it is likely that a fish migrating from the Fox River to the Des Plaines River would reside in the 

Illinois River long enough to incorporate a fin ray Sr:Ca signature indicative of Illinois River 

residency and would therefore again be appropriately categorized as fish with evidence 

suggesting passage.  

Lastly, tributaries within the upper Des Plaines River could also be a source of additional 

fish. Of the target species, however, only Smallmouth Bass, Largemouth Bass and Channel 
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Catfish have been observed in upper Des Plaines River tributaries during IDNR basin surveys, 

suggesting the tributaries are either not appropriate habitat for catostomids and lepisosteids, or 

that those taxonomic groups have not yet expanded their range upstream to access those areas. 

Channel Catfish have been only been found in small numbers in upper Des Plaines River 

tributaries, suggesting those are not prime habitat for that species either. Any fish sampled in this 

study that had been present in upper Des Plaines River tributaries would likely have similar fin 

ray Sr:Ca to fish in the mainstem, as the water Sr:Ca is derived from underlying geology. Water 

samples taken from Salt Creek, the largest tributary in the upper Des Plaines, matched that of the 

mainstem.  

While it was applied to large fish in this study, microchemistry can also be used to study 

small-bodied fishes (Rude et al. 2017) and would be appropriate for the Des Plaines River, as 

new species to the river have included small fish such as the Rosyface Shiner Notropis rubellus 

(Pescitelli 2015) . This is another strength of the tool, as it is difficult to study small fish with 

techniques like telemetry. However, telemetry studies on larger-bodied native fish passage would 

be an excellent complement to microchemistry studies in order to confirm passage events. As 

telemetry arrays are already in place above, below, and within the lock chamber at BRLD 

(ACRCC 2018), the only work that would need to be done is tag implantation for target species.  

Factors affecting estimates of passage  

 Although all taxonomic groups were shown to pass BRLD, confounding factors exist that 

could underestimate BRLD passage. Of particular note are temporal factors. Detecting a 

successful BRLD passage relies on fish acquiring a signature of downstream residency in their 

fin rays. This is not always guaranteed, particularly if a fish resides in a river for a short period of 

time. The rate of signature acquisition depends on a number of factors, including fish age, 
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growth rate, and ambient water temperature (Pracheil et al. 2014). Short-term residency in (i.e. 

rapid movements between) study rivers may not be detectable if a fish was not present in the 

system long enough to acquire a Sr:Ca signature. Even if Sr:Ca residency signatures are 

acquired, they must also be retained. Fin rays and spines may be vascularized and resorbed from 

the core during growth or times of stress, which can erase early life signatures (Tzadik et al. 

2017). Any resorption or non-acquisition of Illinois-Kankakee Sr:Ca signatures could lead to an 

underestimation of passage. Several fin rays with a central lumen were observed during this 

study, particularly in lepisosteids. Overall, when examining Des Plaines River-captured fish (i.e. 

the only fish where the fin ray core was sampled), 2% of centrarchids. 4% of catostomids, 20% 

of ictalurids, and 85% of lepisosteids had a central lumen present of varying size, which could 

indicate a potential loss of early life history signatures. In each case, the central lumen 

encompassed a portion of the first growth season (age-0), not typically the age at which fish 

make deliberate upstream migrations. Though several papers have commented on the difficulty 

of aging lepisosteids based on pectoral fin rays (Buckmeier et al. 2018; King et al. 2018; Stein et 

al. 2018), none have reported the high degree of vascularization observed in this study. Should 

this pattern be consistent across other lepisosteid populations, caution is recommended if using 

pectoral fin rays in microchemistry studies focusing on natal origin analysis, as this information 

may often be lost or obscured.  

 Spatial considerations play an additional role in potential underestimation of passage. As 

anticipated, the similar water Sr:Ca in the Des Plaines River upstream and downstream of BRLD 

compelled the use of fish collected exclusively from upstream of BRLD to confirm upstream 

lock passage, as any fish captured downstream of BRLD with retrospective Des Plaines River 

Sr:Ca signatures could indicate residency exclusively downstream of BRLD rather than passage. 
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However, it is possible that fish from the Illinois or Kankakee rivers had passed. Similarly, it is 

possible that any fish sampled upstream of BRLD with exclusively Des Plaines classifications 

had also passed after residing only in the lower Des Plaines River but not the Illinois or 

Kankakee rivers. Furthermore, the use of the uncertainty category increased classification 

accuracy, but it also may have reduced estimates of movement. Only Des Plaines River fish with 

clear, consistent Illinois-Kankakee signatures were classified as fish with evidence suggesting 

passage. Any Des Plaines fish with consistent uncertain signatures were classified as fish of 

uncertain downstream residency. It is likely that some uncertain classifications were, in reality, 

fish that had resided downstream in the Illinois or Kankakee rivers. Without the use of 

supplementary techniques, however, passage was unable to be assessed in the fish of uncertain 

downstream residency. Therefore, the estimates of passage reported in this paper can be viewed 

as a conservative estimate.  

 While there was evidence of passage across all taxonomic groups in this study, passage 

patterns should only be assumed to hold true for this particular sample; care should be taken 

when extrapolating the results to Des Plaines River fish populations, due to unknown differences 

in passage patterns not only across time scales outside of the fin ray record represented in this 

study, but also in other individuals not sampled within the study reaches and in other reaches of 

the upper Des Plaines River not studied here. Future research is needed to determine whether the 

patterns of passage observed here are consistent with the entire upper Des Plaines populations, 

and whether those patterns are consistent across years and taxonomic groups. Ecological and 

management considerations 

 The Des Plaines River has seen increasing connectivity over the years. Twelve dams have 

been removed upstream of BRLD, and the remaining two low-head dams, which can act as fish 
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passage barriers at low flows, are also scheduled to be removed (Altenritter et al. 2019; USACE 

2013), leaving BRLD the sole barrier to upstream passage into the upper Des Plaines and its 

tributaries. Across the United States, dam removal is occurring at unprecedented rates, with 

1,355 dams removed in the last 30 years and 168 of those in 2017 and 2018 alone (Thomas-Blate 

2019). BRLD, on the other hand, is proposed for heavy modifications to prevent the spread of 

AIS and is also important for maintaining a navigation channel. This highlights the importance 

of the trade-offs between connectivity and invasive species control: there is no solution that will 

be appropriate in every case, and different stakeholders may have different priorities, which may 

vary by system. Globally, in fact, at least 3,700 major dams were proposed or under construction 

as of 2015, which would reduce the number of large, free-flowing rivers around the world by 

more than 20% (Zarfl et al. 2015). Any barrier construction, enhancement, or removal comes 

with its own set of ecological, economic, and social considerations, which should be fully 

examined and addressed as much as possible throughout the planning and implementation 

processes.  

 Some evidence of upstream passage through BRLD by native fish was found in this 

study, and the goal of the installation of barrier technologies at BRLD is to eliminate upstream 

passage. Despite this reality, it is unclear what the impacts of restricting passage at BRLD will be 

on Des Plaines River fish populations. The mechanism and degree to which BRLD passers 

contribute to the Des Plaines River, and whether that contribution is consistent across years and 

taxa, is undetermined and warrants further study. Should passage be eliminated, it also unknown 

whether all fish populations in the Des Plaines River are capable of self-sustaining without 

access to recruitment sources downstream (Altenritter and Casper 2018). There is a need for 

further study on population-level implications of restricted passage. The nearby DuPage River 
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offers a case study to potential impacts of a barrier that eliminates upstream passage. With an 

impassable dam 1.6 km from the river mouth, the DuPage River has seen increasing species 

richness below the dam since 1983 but plateauing richness above the dam (Altenritter et al. 

2019), suggesting that new fish are moving into the river mouth but are unable to pass upstream 

due to the barrier. Future research will be needed to determine whether this pattern may also 

apply to the upper Des Plaines River post-installation of barrier technologies at BRLD. 

Microchemistry could be one of many tools used to assess the impacts of barrier installation: 

fewer immigrants from the Illinois or Kankakee rivers would be expected upstream of BRLD if 

passage is no longer possible. Further research would be needed to capture passage rates of the 

populations at large, both pre- and post-installation of barrier technologies. Microchemistry may 

also prove a useful technique in assessing the efficacy of any mitigation efforts such as stocking 

or translocating fish; if fish are stocked or translocated from sites with unique water chemistry, 

that signature can act as a natural marker that can later be identified (Rude et al. 2014; Wolff et 

al. 2013).  

  Although the priority of the BRLD enhancement project is to limit upstream AIS 

passage, it is important to consider the unintended consequences of restricting passage for native 

species into a river system that has seen increases in species richness, habitat connectivity, and 

restoration efforts. This study suggests that native fish passage should be further studied, 

possibly including additional microchemistry, to inform ecological assessments and mitigation 

related to the planned barrier enhancement at BRLD. 

 

 

 



 

31 
 

EXHIBITS 

Table 1. Counts of fish sampled by taxonomic group from each river. 

      

 River of capture   

Taxonomic group Des Plaines  Illinois Kankakee Total 

Centrarchids 114 49 45 208 

Catostomids 25 60 42 127 

Ictalurids 41 14 20 75 

Lepisosteids 20 13 15 48 

     
 

Table 2. Mean and range of modelled fin ray edge Sr:Ca (mmol/mol) for fish from each 

taxonomic group sampled in the Des Plaines, Illinois, and Kankakee rivers. Outliers (recent 

immigrants) were removed prior to calculating means and ranges. 

 
 

   

 
 Fin ray edge Sr:Ca (mmol/mol) by river  

Taxonomic group  Des Plaines  Illinois Kankakee 

  Mean    Range    Mean    Range   Mean    Range   

Centrarchids  0.460  0.304-0.609 0.350  0.239-0.491 0.280  0.186-0.352 

Catostomids  0.561  0.454-0.717 0.410  0.315-0.511 0.254  0.126-0.402 

Ictalurids  0.469  0.353-0.607 0.325  0.265-0.379 0.229  0.160-0.305 

Lepisosteids  0.615  0.489-0.735 0.476  0.390-0.548 0.320  0.261-0.399 

 

 

 

 

 

 

 

 

 

 



 

32 
 

Table 3. Classification accuracy of the random forest training dataset using modelled fin ray 

edge Sr:Ca values. Values reported represent number of fish assigned to location categories (Des 

Plaines River, Illinois and Kankakee rivers, or uncertain) based on fin ray edge Sr:Ca. 

    
 

 Assigned location Classification 

Source Location Des Plaines  Uncertain Illinois-Kankakee  accuracy (%) 

 Centrarchids  

Des Plaines  33 1 0 97 

Uncertain 1 128 0 99 

Illinois-Kankakee  0 1 36 97 

 Catostomids  

Des Plaines  17 1 0 94 

Uncertain 0 20 1 95 

Illinois-Kankakee  0 0 84 100 

 Ictalurids  

Des Plaines  35 1 0 97 

Uncertain 0 7 1 88 

Illinois-Kankakee  0 0 31 100 

 Lepisosteids  

Des Plaines  15 1 0 94 

Uncertain 0 6 0 100 

Illinois-Kankakee  0 0 22 100 
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Figure  1. Map of the study area in northeastern Illinois. The river reaches between Brandon 

Road Lock and Dam, Dresden Island Lock and Dam and the Wilmington Dam were not sampled 

for fish, nor was the Chicago Area Waterway System.  
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Figure 2. Boxplot of ranges, medians, and inter-quartile ranges for water Sr:Ca from the upper 

Des Plaines River (upstream of Brandon Road Lock and Dam (BRLD)), lower Des Plaines River 

(downstream of BRLD), Illinois River, and Kankakee River. Mean water Sr:Ca differed among 

locations that do not bear the same letter above boxplots (P < 0.05). Samples were collected in 

October 2017 and every other month from April to October 2018 and supplemented with 

additional sporadic samples from 2013-2017.  
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Figure 3. Violin plot showing distributions of fin ray edge Sr:Ca values from fish in each of four 

taxa sampled from the Des Plaines, Illinois, and Kankakee rivers. Mean fin ray edge Sr:Ca 

differed among groups that do not bear the same letter above plots (P < 0.05). 
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Figure 4. Histogram reflecting upstream BRLD passage frequencies for each taxonomic group, 

calculated from proportions of classifications derived from the random forest model.  
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