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AN ABSTRACT OF THE THESIS OF 

Winston Smith, for the Master of Science degree in Computer Science, presented on May 11, 2019, 

at Southern Illinois University Carbondale.  

TITLE:  COLLABORATIVE UAV SURVEILLANCE 

MAJOR PROFESSOR:  Dr. Henry Hexmoor 

Autonomous collaborative robotics is a topic of significant interest to groups such as the 

Air Force Research Lab (AFRL) and the National Aeronautics and Space Administration 

(NASA).  These two groups have been developing systems for the operation of autonomous 

vehicles over the past several years, but each system has several critical drawbacks.  AFRL’s 

Unmanned Systems Autonomy Services (UxAS) supports pathfinding for multiple tasks 

performed by groups of vehicles, but has no formal verification, very little physical flight time, 

and no concept of collision avoidance.  NASA’s Independent Configurable Architecture for 

Reliable Operations of Unmanned Systems (ICAROUS) has collision avoidance, partial formal 

verification, and thousands of hours of physical flight time, but has no concept of collaboration.  

AFRL and NASA each wanted to incorporate the features of the other’s software into their own, 

and so the CRoss-Application Translator for Operational Unmanned Systems (CRATOUS) was 

created.  CRATOUS creates a communication bridge between UxAS and ICAROUS, allowing 

for full feature integration of the two systems.  This combined software is the first system that 

allows for the safe and reliable cooperation of groups of unmanned vehicles. 
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CHAPTER 1 

INTRODUCTION 

 The field of collaborative autonomous robotics is an area of intense interest for many 

groups, not least among them NASA Langley and the Air Force Research Laboratory (AFRL).  

These two agencies have each created software that helps to enable airborne or spaceborne 

vehicles to safely complete missions, but the focus of each agency’s software is, in many ways, 

the opposite of the other.  NASA’s ICAROUS software has thousands of hours of flight time on 

physical vehicles and is partially formally verified [2], but it has absolutely no concept of 

collaborative missions.  AFRL’s UxAS smoothly handles multiple vehicles collaborating to 

complete multiple tasks, but has less than a hundred hours of flight time and little to no formal 

verification on any of its modules.  Both agencies wanted to integrate the other software’s 

features into theirs, and so NASA Langley funded the research behind this paper - the research 

that lead to the creation of the CRoss-Application Translator for Unmanned Operational 

Systems, or CRATOUS.  CRATOUS is a system that allows for full integration of functionality 

between UxAS and ICAROUS.  This is the first general system for collaborative vehicle 

missions that has any guarantees regarding safety of the vehicles, non-violation of mission 

constraints, or completion of the mission. 

 In Chapter 2, we detail the systems currently included in CRATOUS, UxAS and 

ICAROUS.  We cover the architectures of these systems as well as their features and limitations.  

Process flow diagrams are given and explained, and some of the core algorithms are discussed. 

 In Chapter 3, we move on to the functionality of CRATOUS, which combines ICAROUS 

and UxAS.  We give an example problem for each side of the CRATOUS bridge, and walk 
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through what happens in each piece of software.  Finally, we give a short discussion on the 

architecture of CRATOUS and its design philosophy. 

 In Chapter 4, we examine the results of our work that have not already been covered in 

previous sections.  Included is a discussion on the limitations of CRATOUS and suggestions for 

the work that should be done on it in the future. 

 Some work related to this subject can be found in [5], a paper discussing the fine 

hardware and software details of one implementation of small autonomous UAVs.  References 

[6], [7], and [13] discuss decentralized algorithms for consensus in UAVs, which is somewhat of 

an opposite to the approach used in UxAS.  Reference [8] provides a mathematical approach to 

the creation of an algorithm for UAV tracking of unknown targets in low-information 

environments.  Reference [14] discusses the implementation of real-time path planning, 

following the process from algorithm to hardware experiment, and [15] provides an algorithm for 

estimating position and attitude of a UAV with minimal sensors.  The report in [18] details an 

experiment where UAVs are flown in a low-altitude, high-obstacle, high-interference 

environment and expected to inspect ground structures.  Reference [22] approaches UAV routing 

from a communication-aware standpoint, routing UAVs so that they may efficiently 

communicate during a mission.  Finally, [23] provides a system for forest fire monitoring using a 

team of autonomous UAVs. 
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CHAPTER 2 

BACKGROUND: UxAS 

 UxAS is a modular system for computing the optimal paths for a set of UAVs, given a set 

of tasks for the UAVs to perform as a group, constraints on the tasks, keep-in and keep-out 

zones, and the parameters of the UAVs, such as initial position and maximum speed.  UxAS is 

organized into a group of modules, which may send and receive messages across the Light-

weight Message Control Protocol, or LMCP, Bus.  Modules may send a generalized message 

with a topic that other modules may or may not subscribe to or they may send a targeted 

message, delivered only to a specific module or group of modules [21].  AMASE is connected to 

the LMCP bus through its own special connection, and may receive and send messages just like 

normal modules.  Figure 2.1 shows a basic diagram of the architecture of UxAS. 

 

 

Figure 2.1: UxAS Architecture 

A full examination of the workings of UxAS is beyond the scope of this paper, but a brief 

summary is necessary to the understanding of how CRATOUS, as a whole, functions.  At 

startup, UxAS reads from a large set of files, mostly given in the XML format, and uses the 
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settings and input contained in the files to initialize its modules.  Of special importance is the 

process algebra string, which is a string that tells UxAS which tasks should be performed, as well 

as any constraints on the tasks.  This string is discussed further in the section titled “Process 

Algebra,” below.  UxAS expands the algebra string into TaskOptions, representing different 

ways to fulfill the tasks.  For example, a LineSearch task may be searched starting from either 

end of the line.  When the algebra string has been expanded and parsed into internal Task data, 

UxAS enters its main computational phase.   

The core algorithm behind the optimality solving of UxAS is a branch-and-bound tree.  

This tree is roughly sorted from first branch to last branch by cost.  Cost is determined by an 

optimization parameter given by the user before runtime.  The tree is parsed from start to finish, 

and entire sections may be pruned - “bounded” - early if they are obviously worse than a solution 

already found.  Given enough time, UxAS will find the best solution to the mission it was given, 

but given less time than that it will return the best solution it could find in the time it was given.  

Usually, the first branch of the tree is either the optimal solution or, more likely, close in cost to 

the best solution, since the branches are organized according to a basic estimation of their total 

cost.  This allows UxAS to quickly find a solution that should be workable, but in the worst case 

it must consider every possible combination of assignments of TaskOptions to UAVs - an NP-

hard problem that is roughly equivalent to a simpler version of the Travelling Salesman problem 

with multiple salesmen.  Figure 2.2 shows a highly-simplified version of the flow of events in 

UxAS. 
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Figure 2.2: UxAS Sequence of Events (credit to Mr. Paul Coen for creating this figure) 

According to [17], there are five levels of automation in military UAVs, as well as in 

general, ignoring the usual “zero” level of no automation.  The first, and lowest, has been 

achieved.  It is the automation of motion, and in our case this means that a UAV can fly if it is 

given a heading by its operator.  The second level of automation is where UxAS falls; it is the 

automation of deciding where to go.  In the case of UxAS, this means deciding where UAVs 

acting as a group should fly to, given the tasks the group should complete.  The third level is the 

automation of deciding which tasks should be performed in an area, given the overall goal of the 

mission.  To the best of our knowledge, no piece of software has been able to do either this or the 

higher levels of automation.  The fourth level is deciding the overall mission in a small area, 

given an overarching goal in a region.  The fifth level is deciding the overarching goal in a 

region, given only the end goal for the overarching project and information about the entire area 

of interest. 

 UxAS is a system for computing the optimal paths for multiple vehicles to complete 

multiple tasks.  It is easily-extensible, open-source, and has a large and active development team 
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at the AFRL-RQ division.  Its modules are entirely encapsulated from each other with the 

exception of message passing.  AMASE, an easy-to-use simulation environment, integrates 

almost seamlessly into the LMCP Bus.  Additionally, nearly all behavior of UxAS can be 

changed through the use of its settings files, which enables easy automated testing of the 

software. 

Process Algebra 

 The mission specification language for UxAS is called process algebra.  More 

information on process algebra as a mission and task assignment language can be found at [12].  

This is a very small subset of Metric Temporal Logic, and also uses some different notation.  In 

the default process algebra of UxAS, there is no concept of time, and there are only three 

operators.  The first, “alternative,” specifies that at least one task of a set should be performed.  

The second, “parallel,” functions similarly to an “and” operator, specifying that all tasks in the 

set can and should be performed concurrently.  The third, “sequential,” specifies that tasks 

should be assigned in the same order they are given, but otherwise behaves the same as the 

parallel operator. A table of these operators and their symbols is given below. 
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Table 2.1: Default UxAS Process Algebra 

Operator Symbol 

ALTERNATIVE + 

PARALLEL | 

SEQUENTIAL . 

 

 The “timing” GitHub branch of OpenUxAS provides three additional process algebra 

operators, but is not part of the core software yet.  The code for the “timing” branch can be found 

at https://github.com/afrl-rq/OpenUxAS/tree/timing and a discussion of these operators is in the 

next section. 

Timing Constraints in Process Algebra for UxAS 

 The default process algebra for UxAS is quite basic.  Aside from an “and” operator and 

an “or” operator, there is only one further operator, sequential, which in practice works much the 

same way as the “and” operator.  To expand the flexibility of assignment specification, three new 

operators were added and the definition of the sequential operator was changed.  The list of new 

operators can be found below, in Table 2.4. 

Table 2.2: Timing Operators of UxAS 

Operator Symbol 

TILDE ~ 

ABSOLUTE _[ t1 - t2 ] 

RELATIVE -[ t1 - t2 ] 
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 The definition of the sequential operator was changed to be an end-to-start constraint on 

the two tasks.  The string “.(p1 p2)” specifies that both p1 and p2 should be assigned, but p2 

should not start until p1 is complete.  The tilde operator works the same way, but is a start-to-

start constraint rather than end-to-start.  These two operators allow for a task dependency 

hierarchy to be created.  This is useful in many scenarios.  One example is if a UAV should 

attack a specified area, but cannot enter the area until an anti-UAV defense site is cleared, either 

by that UAV or a different one. 

 The timing  operators continue in the same vein.  The absolute timing operator follows a 

list of tasks, and t1 and t2 give a range in milliseconds from the start of the mission.  The task list 

cannot begin before t1, and cannot end after t2.  The relative operator works the exact same way 

except for when the sequential and/or tilde operators are present.  When these operators are 

present, the relative operator’s meaning changes.  If the sequential operator is present, then the 

second task, the one that cannot begin before the end of the first task, cannot begin before t1 

milliseconds after the completion of the first task, and cannot end more than t2 milliseconds after 

the completion of the first task.  The same logic follows for the tilde operator, but, as before, the 

constraint is start-to-start rather than end-to-start.  For both relative and absolute timing 

operators, if more than one can apply to a given task - such as in the string “|(p1 |(p2 p3)_[1000-

1500])_[100-3000]” - then only the timing constraint that applies to fewer tasks will apply to its 

tasks. 

 The code that powers these constraints  is located in the process algebra parser, branch 

and bound tree analyzer, and loitering assignment services of UxAS.  The algebra parser has 

been modified to accept the new operators, put the information about them into a message, send 

out said message, and strip the new operators from the algebra string before continuing with 
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normal operation.  The loitering assignment service accepts messages from the branch and bound 

tree analyzer, and assigns loiter tasks to the relevant UAVs at the specified times.  This allows 

UAVs to wait before performing a task if necessary.   

 The branch and bound analyzer service has been modified to accept information about 

the new operators from the algebra parser, change how the tree is parsed based on this 

information, and pass any necessary loiter commands on to the loiter assignment service.  At 

initialization, the information from the algebra parser is ready, and it stored internally for later 

use.  When execution passes to the point where the branch and bound tree needs to be analyzed, 

the modified service uses the algebra information to change how the tree is parsed.  Every time a 

branch is considered, the estimated times for beginning and completion of each task with a 

dependency or timing constraint is checked, and if it does not satisfy the constraints then it is 

pruned, no matter how optimal it may otherwise be.  If a task satisfies the constraints except that 

it would begin too early, then a loiter task is assigned to cause the UAV to wait long enough to 

follow constraints.  This is a different process from how the “vanilla” operators are parsed; in 

default UxAS the operators are implicit in the construction of the tree.  This departure from the 

norm is necessary because the tree is constructed before time estimation occurs, which means 

that timing operators would not function properly otherwise.   

Limitations of UxAS 

 First and foremost, UxAS has no verification, and extremely limited testing outside of the 

AMASE simulation environment.  It has approximately 150 hours of real flight time as of 2014 

[21], and no formal verification at all as of the time of writing.  Additionally, UxAS potentially 

computes every possible combination of assignments of all tasks to all UAVs, so its 

computational complexity is potentially factorial in nature 



10 

 

Background: ICAROUS 

 ICAROUS, or Independent Configurable Architecture for Reliable Operations of 

Unmanned Systems, is a relatively new project from NASA Langley aiming to create, as the 

name implies, a verifiable and verified system for operations of autonomous vehicles.  The 

architecture of ICAROUS is nominally similar to that of UxAS: There are many apps, connected 

through a messaging system via subscriptions.  The only major architectural difference is that 

ICAROUS can, and is in fact designed to, run on a single autonomous drone, using no operating 

system, whereas UxAS must run on one of the major operating systems - Mac OS X, Ubuntu 

Linux 16.04, or Windows 7 or 10.  Figure 2.5 displays a simple representation of the architecture 

of ICAROUS. 

 

Figure 2.3: ICAROUS Architecture 

Portions of ICAROUS are formally verified by the use of PVS Version 6.0 and the 

NASA PVS library.  PVS is a verification system used for automated formal verification of 

software systems.  ICAROUS is also being developed in a verification-driven manner, as 
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discussed in [11] and [20].  The two portions of ICAROUS that are fully formally verified at the 

time of writing are DAIDALUS [19], which handles the detection and avoidance of collisions, 

and PolyCARP, which handles computation behind the exact location of the points in polygons.  

This functionality is mainly used in allowing ICAROUS to know where geofences are located.  

Together, these two pieces of software can guarantee that collisions are avoided and mission 

constraints are respected given that it is possible to do so.  The third guarantee mentioned in this 

paper, that of mission completion, is given as a result of extensive real-world testing of 

ICAROUS.  The system has thousands of hours of flight time, and though new bugs are still 

found occasionally, mission completion can be practically guaranteed.  The PVS proofs for 

DAIDALUS and PolyCARP can be found at https://github.com/nasa/WellClear/tree/master/PVS 

and https://github.com/nasa/PolyCARP/tree/master/PVS respectively.  These proofs are far too 

long to directly quote in this paper. 

 ICAROUS is a project of interest because, to the best of our knowledge, it is the first and 

only system for the control of autonomous vehicles with any thought given to formal verification 

during development.  Thus, it is the only such system that is at least partially proven to be safe 

and to follow mission constraints. 

Limitations of ICAROUS 

 ICAROUS was designed to only control a single vehicle.  It has absolutely no concept of 

cooperation, or of any vehicle -- other than the one it controls -- that is not an intruder.  It is also 

only partially formally verified, and large parts of the code governing regular usage are not 

formally verified.  The simulation environment for ICAROUS, MAVLink, is quite difficult to 

users, and is relatively feature-poor to developers.  Additionally, it is relatively difficult to define 
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new missions in ICAROUS; there is no system equivalent to the process algebra of UxAS, nor 

the GUI editor for missions. 

 That said, these points are mostly either usability concerns or not as severe as they may 

appear.  The partial formal verification allows the developers to continue developing ICAROUS, 

since they are not allowed to modify verified portions of code, and the thousands of hours of live 

flight time help to assure code correctness in the meantime.  The final two points are based in 

usability.  All of these complaints, with the sole exception of the one concerning formal 

verification, are solved with the addition of CRATOUS.  CRATOUS provides ICAROUS with a 

connection to UxAS, which can control multiple vehicles collaboratively.  ICAROUS is also 

provided with the OpenAMASE simulation environment, a much more sophisticated tool than 

MAVLink, and OpenAMASE includes a relatively easy-to-use GUI editor for missions.  On top 

of that, CRATOUS missions are specified in process algebra through UxAS, making it much 

easier to quickly define new missions. 
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CHAPTER 3 

APPROACH/METHODOLOGY: CRATOUS 

 The CRoss-Application Translator for Operational Unmanned Systems, or CRATOUS, is 

an ICAROUS module created to allow ICAROUS to connect to any server that has been 

configured to accept it.  In the work done for NASA Langley in the summer of 2018, a module 

that can handle ICAROUS was added to UxAS, enabling these two pieces of software to 

collaborate on mission planning and runtime rerouting.  As was mentioned in the introduction 

section, the combination of ICAROUS, CRATOUS, and UxAS has created the first system for 

solving general collaborative automated vehicle missions with any sort of guarantees towards 

safety, constraint nonviolation, or mission completion.  In this section, we will expand further on 

these technical details, as well as detailing exactly how CRATOUS works. 

 CRATOUS is both an application that sets up a TCP/IP bridge with the server, 

communicates with the server, and provides an interface to ICAROUS for the server; and the 

overall messaging bridge between ICAROUS and the server.  We have said that the modules of 

ICAROUS and UxAS communicate through a messaging bridge, and CRATOUS does not break 

this convention.  Every change in behavior exhibited between ICAROUS and UxAS with and 

without CRATOUS running can be explained by the messages sent and received by the respective 

modules in each piece of software.  This allows CRATOUS to function with, more or less, black-

box applications.  So long as the messaging interface between each side of CRATOUS and the 

overall pieces of software is the same, the internals of the applications do not affect how 

CRATOUS behaves on a basic level. 

 CRATOUS operates on an Internet connection between two pieces of software, and so in 

the real world, where there are no guarantees of message delivery via the Internet, it is non-
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algorithmic and provides no hard guarantees.  However, with a reliable Internet connection, there 

are many useful properties of the system as a whole.  With ICAROUS running on each vehicle, all 

of the guarantees ICAROUS gives are provided here as well.  Namely, vehicles will not violate 

mission constraints given that a nonviolation is possible, vehicles will not collide with each other 

or with intruders given that it is possible to avoid such collisions, and missions will be completed 

in finite time if it is possible to do so.  With UxAS running as an overall mission “commander,” 

these features are brought into a collaborative environment, with one caveat.  The instances of 

ICAROUS that run for each vehicle do not communicate with each other, so in very rare, perfectly-

symmetrical edge cases, vehicles may avoid each other and end their avoidance maneuver in the 

exact same positions they started the maneuver in, forever.  This requires that the vehicles approach 

roughly the same point at nearly the exact same time, have the exact same maneuverability 

parameters as each other, and start and end their avoidance maneuvering at nearly the exact same 

time.  Additionally, altitude and speed resolutions must be impossible or disabled for this scenario 

to occur.  Examples where the guarantees do and do not break down are seen in Figures 3.1, 3.2A, 

and 3.2B. 
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Figure 3.1: A case where the ICAROUS guarantees break down 
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Figure 3.2A: A case where the ICAROUS guarantees look like they will break down, but do not.  

Beginning of simulation 
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Figure 3.2B:  Example of a case where the ICAROUS guarantees look like they will break down, 

but do not.  After avoidance maneuvers 

CRATOUS Architecture 

 In this section, we examine the overall architecture of CRATOUS, including an example 

walkthrough for a simple mission from the perspective of UxAS, then ICAROUS, and finally an 

overview of what goes on in both systems throughout the mission.  However, before that, we must 

first examine the CRATOUS messaging system.  When ICS sends a message to the CRATOUS 

app in ICAROUS or vice versa, a very specific format is used.  A five-letter identifier of the 

message type is given, and then each field of the message is specified.  The format is label-value, 

with the label in capital letters and the value given immediately after.  A comma is inserted at the 
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end of the value.  The fields can be in any order, but the message identifier must occupy the first 

exactly five characters of the message.  An endline character marks the end of a message.  An 

example message that CRATOUS might send is: 

 WAYPTtotal1,index1,lat51.433647,long-0.215516,alt100,speed100,\n 

This message describes the first waypoint of a mission that has only one waypoint.  A 

waypoint is one entry in an arbitrarily-long list of points that the vehicle should navigate to.  The 

waypoint is located at the given latitude and longitude, 100 meters above the ground, and UAVs 

should be moving as close to 100 meters per second as possible when moving toward the waypoint 

from the starting position or previous waypoint.  There are several other types of messages in 

CRATOUS. Their identifiers and purposes are given in the table below. 
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Table 3.1: CRATOUS message types 

Tag Purpose 

GEOFN Geofence specification 

POSTN Owned ship’s position, velocity, and heading 

ATTUD Owned ship’s attitude (pitch, roll, and yaw) 

OBJCT Other vehicles, and non-vehicle objects 

COMND Command messages 

WPRCH Indicates a given waypoint was reached 

WPREQ Request for a path between two waypoints 

UxAS with CRATOUS 

 As we have discussed previously, UxAS is a modular system for optimal path planning 

between sets of autonomous vehicles on collaborative missions.  However, it has nearly zero flight 

time and no formal verification.  Each module of UxAS interacts with the others through a 

messaging interface, and messages can be sent to an individual module, to a group of modules, or, 

most commonly, as a general announcement that any subscribed module can receive.  When UxAS 

runs with the IcarousCommunicationService, or ICS, module included, this architecture is 

unchanged except for the addition of the extra module.  This can be seen in Figure X.X: UxAS 

Architecture with CRATOUS.  When ICS starts up, it will look inside its configuration file to see 

how many instances of ICAROUS are to connect to UxAS and wait for these connections.  Since 
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UxAS initializes modules sequentially, this causes the entire program to wait on the ICAROUS 

connections to be authenticated. 

 

Figure 3.3: UxAS Architecture with CRATOUS 

 When all instances of ICAROUS have connected to UxAS successfully, then UxAS 

finishes its initialization of the other modules and proceeds with normal processing as outlined in 

Chapter 2 Section A until the time comes for simulation, unless the use of an ICAROUS path 

planner for pre-mission path planning is requested.  In this case, a message is sent out in UxAS to 

disable the UxAS path planning modules and an instance of ICAROUS is chosen to handle pre-

mission path planning.  Further discussion of this scenario is in the next subsection of this chapter.  

UxAS will also send waypoints for all geofence vertices to ICAROUS so that ICAROUS will not 

send any UAV through a no-fly zone. 

 When the assignment tree has been parsed and AMASE begins to simulate the mission, the 

ICAROUS instances are each assigned to a UAV in order of ascending UAV ID number.  The 

waypoints for each UAV that has an ICAROUS instance assigned to it are sent to the relevant 

ICAROUS instance, and the mission is ready to begin.  There may be fewer ICAROUS instances 

than UAVs in the scenario, but there may not be more.  The UAVs that are assigned an ICAROUS 
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instance will have collision avoidance enabled, and the others will not.  The simplest case is where 

only a single UAV out of multiple has ICAROUS attached, so we will go through this example 

first, then move on to missions where there are more ICAROUS instances enabled.  As discussed 

in Chapter 2 Section B, ICAROUS is an ownership-based system, meaning that it is only capable 

of guiding a single vehicle, its “owned ship.”  Thus, a single ICAROUS instance cannot guide 

multiple UAVs and a separate instance of ICAROUS must be created for each UAV where 

collision avoidance is desired. 

 In a mission where a single UAV is handled by ICAROUS and at least one other is not, 

only the UAV with ICAROUS has any guarantees about mission conformance, completion, or 

safety.  The others should still complete the mission without violating the constraints, but these 

UAVs are handled exclusively by UxAS.  ICAROUS is fed a constant “heartbeat” stream of 

information, carried in several messages that are sent from UxAS to ICAROUS via ICS and 

CRATOUS twice per second.  One message is for the owned ship’s position, speed, heading, and 

current waypoint; one message per non-owned vehicle is sent with the same information about that 

vehicle except for current waypoint; one message is for the owned ship’s attitude (pitch, roll, and 

yaw); and the final message is an optional command message, which can cause ICAROUS to reset, 

forget geofences, forget waypoints, allow UxAS to take over live path planning, and so on.  When 

ICAROUS predicts a collision or well-clear violation, it will send a message to UxAS through the 

same CRATOUS-ICS bridge and UxAS will allow it to take control of that UAV.  Further 

information about what messages ICAROUS sends to control a UAV during a collision avoidance 

maneuver is in subsection B.2.  UxAS will also update ICAROUS whenever a mission waypoint 

is reached, so that ICAROUS can plot a return-to-path maneuver for the proper waypoint.  While 

ICAROUS is in control of a UAV, UxAS will keep track of any task the UAV was in the middle 
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of performing, if any, and judge whether or not the UAV was kept close enough to on-course to 

continue the task from where ICAROUS hands back control, or if the UAV needs to go back to 

some point during the avoidance maneuver and restart the task from there.  The exact distance that 

determines how far “too far” is, is given in a configuration file at startup. 

 Command messages are usually only sent from UxAS to ICAROUS, and usually only in 

the case of a nonfatal error, such as ICAROUS sending a message indicating that it didn’t receive 

part of a geofence.  The only other cases where a command message might be sent are when UxAS 

encounters a fatal internal error, on the start of a mission, or immediately before and after an 

avoidance maneuver.  In the last case, ICAROUS will send a message notifying UxAS that it 

would like to take or relieve control of its UAV. 

 In a scenario with multiple UAVs being controlled by ICAROUS, the multiple instances 

of ICAROUS do not communicate with each other.  Collaborative avoidance maneuvers and 

intersection control are subjects beyond the scope of this work.  Instead, each UAV will treat each 

other UAV as an intruder with an unknown path, and attempt to avoid these intruders.  If both of 

the UAVs involved in a predicted collision are controlled by ICAROUS, they will both attempt to 

avoid the other, which is suboptimal.  So long as avoidance is possible, it will still happen, but 

there may exist a temporary seeming deadlock of a given intersection.  An example of such a 

seeming deadlock is given in Figures 3.1, 3.2A, and 3.2B, above. 

ICAROUS with CRATOUS 

 As we have discussed previously in Chapter 2 Section B, ICAROUS is a modular system 

with partial formal verification for planning and executing missions for a single UAV while 

avoiding obstacles and other vehicles that may or may not be moving.  It has thousands of hours 

of flight time on physical aircraft, and brings some guarantees of mission completion, restraint 
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compliance, and aircraft safety.  However, unlike UxAS, it does not have an easy-to-use simulation 

environment, and it cannot command multiple vehicles simultaneously.  When ICAROUS starts 

up, it will initialize its various modules, allocating memory for them and messages sent to them.  

The messaging system in ICAROUS uses the same basic “subscribe and send” system as UxAS, 

but there is no way to send a message to a specific module from another module, and no concept 

of groups of modules.  Instead, all messages are pushed to the common message bus, and any 

modules that have subscribed to that type of message will receive it.  Figure 3.5, ICAROUS 

Architecture with CRATOUS, is an illustration of this. 

 

Figure 3.4: ICAROUS Architecture with CRATOUS 

 When ICAROUS starts up, one of the modules it initializes is named CRATOUS.  

CRATOUS will attempt to connect to UxAS using a given IP address, and if it cannot then it will 

exit and cause ICAROUS to crash.  If the user has specified that an ICAROUS path planner should 

be used for pre-mission path planning, then UxAS will send a command message to CRATOUS, 

prompting it to request routes that are fed in by UxAS and send back the results.  When UxAS has 



24 

 

sent the geofence information and the waypoints for the vehicle owned by ICAROUS, the mission 

is ready to begin.   

When the simulation is started, the two-hertz heartbeat messages regarding vehicle 

positions to ICAROUS from UxAS will begin and ICAROUS will monitor for possible collisions 

or well-clear violations.  Other than this heartbeat message, CRATOUS now acts as a listener to 

ICAROUS.  If and when a violation is detected, ICAROUS will begin to attempt avoidance and 

CRATOUS will begin sending messages back to UxAS.  CRATOUS translates the messages 

ICAROUS creates regarding desired headings into the string-based format discussed above and 

sends the translated messages to ICS.  ICS will then translate the strings into LMCP messages for 

UxAS and AMASE, and broadcast these commands.  CRATOUS will continue to send these 

control messages until such time as ICAROUS decides that the UAV may return to course, and at 

this point CRATOUS will return to just sending out the heartbeat message to ICAROUS. 

Overview 

 CRATOUS as a full integrated system performs all of the tasks of UxAS and ICAROUS, 

with communication between them to control the simulation environment.  The architecture of this 

complete system is shown below.  The Ardupilot and Ground Station Interface modules are crossed 

out because UxAS fills this functionality for ICAROUS. 
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Figure 3.5: UxAS and ICAROUS Architecture with CRATOUS
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 CRATOUS was made with three major goals in mind: high extensibility, low programmer 

time to write code, and the ability to link UxAS and ICAROUS without affecting their internal 

processing.  High extensibility was the primary concern, and a string-based messaging protocol is 

extremely extensible.  The other approach that we examined that would have also been extensible 

was putting a software wrapper around ICAROUS and then putting ICAROUS directly inside of 

UxAS.  This approach was abandoned when it became obvious that the secondary goals, writability 

and modularity, would suffer and that the Internet-based approach that was taken could fulfill all 

three goals simultaneously. 
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CHAPTER 4 

RESULTS AND CONCLUSION 

 As we covered previously, the creation of CRATOUS fulfilled all major goals.  Namely, 

ICAROUS and UxAS are each able to access the full functionality of the other program during 

their normal runtime, and while the current system has some limitations, it does allow for generally 

safe operation of collaborative unmanned vehicles.  We have given ICAROUS the ability to 

perform collaborative missions, use the AMASE simulation environment, and do path planning 

through the UxAS path planners rather than its own.  We have given UxAS access to the formally-

verified collision avoidance system of ICAROUS, as well as the ability to use the ICAROUS path 

planners, some of which are formally verified. 

Limitations 

 CRATOUS currently requires roughly one dozen software parameters to be manually tuned 

to each scenario.  These parameters could be determined automatically, but time did not permit the 

implementation of this determination.  If any of these manual parameters is set incorrectly, the 

vehicles may show undefined behavior.  Most of the time, this undefined behavior results in a 

well-clear violation or nonconformance to mission constraints, but it may be as extreme as vehicles 

flying in a straight line, regardless of anything else, indefinitely. 

 One other, major, limitation that has been mostly ignored to this point is that CRATOUS 

requires an Internet connection to function.  In practice, this may cause CRATOUS to be unusable 

- for instance, in a hostile environment, smoke or purposeful jamming may disconnect a given 

vehicle from the network and cause CRATOUS to stop functioning as intended.  In summary, 

CRATOUS only works when its manually-set parameters are tune correctly, and when it has a 

dependable Internet connection. 
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Future Work 

 The immediate next step in CRATOUS is to determine the above parameters automatically, 

allowing for a much more reliable system and automated testing.  The next step is to begin 

verification and flight testing, and to improve the generality of CRATOUS so that it could work 

with different protocols, or even as a server rather than as a client.  This would allow for much 

broader research into how ICAROUS can function with other programs, and would allow the 

developers of ICAROUS to connect it to programs that provide desired functionality as opposed 

to implementing it themselves. 

 A more long-term goal for CRATOUS is to allow it to use more direct communication 

methods than an Internet connection - a direct connection between vehicles that cannot 

communicate with the base station.  This would not remove the requirement for an Internet 

connection in order for vehicles to connect to UxAS and function collaboratively as a whole, but 

it would allow vehicles to collaborate in a limited fashion when communication with the 

controlling base station is cut off. 
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