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MAJOR PROFESSOR:  Dr. Banafsheh Rekabdar 

 

     Being able to predict and recognize human activities is an essential element for us to 

effectively communicate with other humans during our day to day activities. A system that is 

able to do this has a number of appealing applications, from assistive robotics to health care and 

preventative medicine. Previous work in supervised video-based human activity prediction and 

detection fails to capture the richness of spatiotemporal data that these activities generate. 

Convolutional Long short-term memory (Convolutional LSTM) networks are a useful tool in 

analyzing this type of data, showing good results in many other areas. This thesis’ focus is on 

utilizing RGB-D Data to improve human activity prediction and recognition. A modified 

Convolutional LSTM network is introduced to do so. Experiments are performed on the network 

and are compared to other models in-use as well as the current state-of-the-art system. We show 

that our proposed model for human activity prediction and recognition outperforms the current 

state-of-the-art models in the CAD-120 dataset without giving bounding frames or ground-truths 

about objects. 
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CHAPTER 1 

INTRODUCTION 

     Human action detection and prediction is an important task fit for modern machine learning 

approaches. These tasks are defined as the ability for a system to either recognize actions of 

humans in a given environment or the ability of a system to predict those actions a given set of 

time in the future. In recent years, many approaches have helped to improve this field greatly, 

however further improvements can be made. In particular, recent improvements to network 

layers have helped to bolster current accuracy measures even higher. 

     Prior methods focus has been in a two-front effort. The first was focused around image 

generation and predicting these images over time based on the current and prior images the 

system has seen. The second method is a form of label prediction in which a system is given sets 

of labeled images and is asked to either give labels for unlabeled images or predict future labels. 

Many methods have been used to do this throughout the past 7 years. Approaches that have been 

attempted in this time include things such as Conditional Random Fields (CRFs) [1] [2] [3], 

Salient Proto-Objects [4], Support Vector Machines (SVMs) [5] [6], Hidden Markov Models 

(HMMs) [7] [8], Stochastic Grammar [9], Convolutional Neural Networks (CNNs) [10] [11] [12] 

[13] [14] [15], Recurrent Neural Networks (RNNs) [16], Glimpse Clouds [17], networks based 

on Convolutional Long Short-Term Memory layers (Convolutional LSTMs) [18] [19], and a few 

other hybrid neural network architectures described in [20] [21]. Some issues with these systems 

are that they either require large structures to represent the given data, or they require large 

network structures to interpret the data. 

     Convolutional LSTMs were originally developed in [22] as a system to be used for weather 

forecasting. Some recent works in human action prediction and detection have used 
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Convolutional LSTMs as a way to increase accuracy of both methods mentioned above. The 

efforts in this thesis are focused on the second method, label detection and prediction, using a 

modified Convolutional LSTM network. A focus is made on the CAD-120 dataset due to its ease 

of use and possible accuracy improvements. The data shows that this network is both good at 

predicting and detecting tasks, rivaling the state-of-the-art model in some categories. Another 

major advantage is that this system utilizes a small number of layers allowing it to be applied to a 

larger variety of devices. 
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CHAPTER 2 

PRIOR WORK 

     Human activity detection and prediction is a field rich in many types of data. Others have 

explored this variety of data in many meaningful ways that have aided in future developments. 

Many models to detect and predict different types of activities have been developed for RGBD 

images, skeleton data, object information, and many other inputs. The models developed using 

these inputs include such things as various types of Conditional Random Fields (CRFs) [1] [2] 

[3], Salient Proto-Objects [4], Support Vector Machines (SVMs) [5] [6], Hidden Markov Models 

(HMMs) [7] [8], Stochastic Grammar [9], Convolutional Neural Networks (CNNs) [10] [11] [12] 

[13] [14] [15], Recurrent Neural Networks (RNNs) [16], Glimpse Clouds [17], networks based 

on Convolutional Long Short-Term Memory layers (Convolutional LSTMs) [18] [19], and a few 

other hybrid neural network architectures [20] [21]. Each model poses its own strengths and 

weaknesses when compared with one another. More details on these methods are given below in 

each section. 

2.1 Graph-based Approaches 

     Many prior methods of human activity detection and prediction began with looking at graph-

based models. One early technique, used by the authors of [7], was to use a hierarchical 

maximum entropy Markov model. In this system, the authors were able to infer the skeleton data 

from RGBD photos to find a given person’s body pose and motion information. Using this 

information, they were able to develop and train a hierarchical graph that can detect what a 

person is doing based on 12 unique activities. Another venture into the use of Markov models 

and other systems was done utilizing a modified version of this approach. In [5], the authors 

focus was to utilize a combination of RGBD photos alongside skeleton data, object information, 
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and interactions between these two to predict and detect given activities going on in a system. To 

do this, they used a Markov Random Field to model their system as a graph with interactions. To 

determine classification for a dataset, they were able to take the output of this model and classify 

it with both an SVM and a k-Nearest Neighbor classifier. The final score for their classification 

was determined by the sum of these two results. Prediction was done using a similar method. 

They set some of the initial benchmark results for the CAD-120 dataset used and developed in 

[5]. Following this, the authors of [6] tried to strip away any unneeded parts of the model in [5]. 

They ended up focusing solely on SVMs and unstructured graphs. This simplified system 

achieved higher accuracies than the original by a margin of around 3%. 

     In [1], the authors tried a different graph-based approach focusing around CRFs. These are a 

type of graph by which all activities can be viewed as a sequence of trees. These trees describe 

what is going on at a given timestep t. Predicting future frames becomes of task of building new 

sets of trees that are likely to arise from what has been seen in prior trees. The use of CRFs has 

around the same results as prior systems when it comes to accuracy. More specialized CRFs are 

developed in both [2] and [3]. With [2] the focus was to model and predict a person’s trajectories 

of their pose to infer future actions. In [3], they used a Gaussian Process to reduce the amount of 

data a human is represented with and predicted their actions based on this reduction. 

     The authors of [8] revisited older work on Markov models in [5] & [7] and revealed that the 

best results with this system had not yet been reached. Their work on HMMs was only interested 

in using skeleton data to detect human activities. Overall, they were able to show that, using this 

model, both sub-activity and high-level activities can be detected better by a margin of around 

another 3%, finally pushing overall accuracy above 90%. 
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     New unique methods were developed in both [4] and [9] to attempt to achieve even better 

results. In [4], the authors developed a system based around Salient Proto-Objects. These are 

essentially probability maps of what is going to happen in a given photo. Using these probability 

maps, they were able to apply other techniques, such as the use of SVMs, to classify the images 

seen into their respective categories. This method was able to be performed without information 

on ground-truths of the system. It achieved worse accuracy due to this, however it still achieved 

an impressive 78.2% accuracy on CAD-120. In [9], the authors develop a spatial-temporal And-

Or graph represented by stochastic grammar. This grammar describes given subactivities that are 

made from human actions, objects, and object affordances. Similar to other methods, this gives a 

hierarchical model to view each event that is occurring. They are able to categorize activities 

based on a similar structure to decision trees. This tree is then able to predict and detect given 

activities based on the frame it is currently viewing. The results from this are similar to results 

from [8]. 

2.2 Neural Network-based Approaches 

     A more current approach to human action prediction and detection is to use various types of 

neural networks. Early work using neural networks began in 2012 with Convolutional Neural 

Networks (CNNs). These networks are generally good at capturing spatial information; however, 

they occasionally have trouble seeing temporal interactions. The network described in [12] is one 

of the first to use three-dimensional convolutional neural networks (3D CNNs) to counteract that 

issue. Their design is able to use a set of 4 stacked convolutional layers into a fully connected 

layer. This model’s main difference from a normal CNN design is that it was using 3D 

Convolutions. A few years later, a model developed in [13] utilized a combination of 3D 

Convolutional layers, however their structure differs due to segmenting their input into multiple 
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segments. These inputs are then fed through separate convolutional layers that all lead and merge 

to a set of fully connected layers. 

     In [11], the authors used CNNs for human activity detection. Their main contribution was the 

ability to apply this to a first-person perspective. Prior methods only used a third person view 

and ignored the difference in perspective when applying models to a robot performing a similar 

task. Compared against classifiers that were utilizing k-Nearest Neighbor and Random Decision 

Forests, CNNs outperformed both methods. 

     Utilizing similar ideas from [13], the authors of [14] discovered that using the idea of merging 

and fusing different types of subnetworks together can lead to better learning from a system. In 

their model, they separate the network into two sets. A temporal set of layers is used to infer data 

from a perspective over time utilizing 3D convolutional layers. A spatial set of layers was also 

used to infer data from a spatial perspective using 2D convolutional layers. They fused these two 

using 3D convolutions as well as 3D pooling to then produce results for human activity 

detection. At a similar time, [15] utilized a modified auto-encoder model with 3D convolutional 

layers. This type of model uses a down-sampling technique for the encoder to reduce what 

information describes the input image. It is then up sampled in the decoder segments of the 

network to produce an image of the same size where pixels of the new image represent 

classifications of the pixels. The classification for human activity detection is then derived from 

a linear SVM applied to the output. 

     Up to now, all methods mentioned in section 2.2 utilized either RGB or RGBD images 

coupled with skeleton and/or object information. A unique method from [10] instead used just 

transformed skeleton information ground truths as input. They first applied various 

transformations of their system to produce an “image” of the skeleton at a given segment in time. 
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This consisted of a 3-channel image where the channels represent a different joint of reference 

and the width and height represent the coordinates and sequence number respectively. This data 

was then fed to a convolutional layered model to recognize given actions. 

     On the other side of the spectrum are RNNs. These networks consisted of a series of cells that 

are fed in as chains into one another. They are good at producing results for temporal 

interactions, however, usually lack awareness for spatial information. In [16], the authors 

recognized this weakness and created a structure to attempt to overcome this issue. They utilized 

various graph structures that can represent models of people and objects through time. These 

graphs were fed into one another as time passes. An RNN was applied on top of this graph, 

utilizing it as input. From this, it was able to both predict future action labels and detect current 

action labels of the system. 

     A combination of RNN architectures and CNN architectures is used in a hybrid network 

developed in [20]. They use a set of convolutional input layers that feed into a set of LSTM cells 

that then feed into a fully connected layer. This allows for the ability to capture important 

temporal information from the spatial information inferred by the CNN layers going into the 

RNN layers. As is used by the authors of [17], Glimpse Clouds are a good way to observe a 

system in which you have partial information of labels. They utilize a similar hybrid approach to 

the prior methods in [20]. Rather than using LSTMs though, they use a more simplified Gated 

Recurrent Unit (GRU). Another major difference is that a Glimpse Cloud is composed of a set of 

predictions, not just one. Each set is composed of a weighted group of outputs from each set. 

This enables each set to have different predictions based on what they weight priority to over 

time. Their inputs are also unique in that is does not need fully labeled data to train on. Given 
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partially labeled data, a Glimpse Cloud is able to infer missing labels. They are able to also use 

not just RGBD images, but also skeleton data to improve results. 

     [22] is gaining a lot of attention in many applications of prediction and detection. Originally 

used for precipitation nowcasting, [22] details a new layer for neural networks to utilize to 

represent spatio-temporal data in a meaningful way. Convolutional LSTMs are introduced here 

as a way to capture the spatial data from convolutional layers, and the temporal information 

found by LSTMs. Later papers build on this in many other fields as its layered design is good for 

things beyond simply forecasting the weather. 

     One of the first uses of Convolutional LSTM layers outside its original use was in human 

prediction using unsupervised learning in [19]. The network design described here utilizes a set 

of cells composed of convolutional layers that use Convolutional LSTM layers as a sort of 

memory unit for representing events it has seen in the past. These cells are then stacked onto one 

another where the convolutional layers feed into the next set of convolutional layers and the 

Convolutional LSTM layers feed back into prior Convolutional LSTM layers. This ensures that 

prior events are remembered and propagated to all cells. A prediction section of each cell is also 

generated from the Convolutional LSTM units. In this paper however, they are not looking at 

predicting labels. They are generating possible future frames. Another more direct approach to 

predicting future frames using these layers and unsupervised learning was done in [18]. Their 

design was focused around using the layers directly as the backbone of their network. The 

authors used a convolutional layer that fed into a set of 7 Convolutional LSTM layers that then 

fed back into a convolutional layer for image generation. The main focus here was to predict 

motion in future images. The error of future frames ended up being represented as a blur in 
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images that are generated. So, the further in the future images were generated for, the blurrier 

they got, thus showing the error seen over time. 

     The most recent use of Convolutional LSTM layers seen in human action prediction and 

recognition is in [21]. Here, they use a graph model to represent interactions between object and 

people in the environment seen. Objects and people are represented as nodes on this graph. The 

main use of neural networks here is the transitions between timesteps in the graph. The structure 

is translated and taken as neural network input. Is it then passed through Convolutional LSTM 

layers which generate the new graph structure one timestep in the future. Tested on CAD-120, it 

is able to show good results for detection and prediction. 
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CHAPTER 3 

PROPOSED APPROACH 

3.1 Network Inputs & Augmentation 

     Utilizing the Convolutional LSTM layers described in Chapter 2.2 we are able to have the 

first layer of the Convolutional LSTM as initial network input. Two models were developed to 

test detection and prediction, one for each. The inputs for the models are composed of a 3-

dimensional matrix of photo layers in which the layers are stacked as is seen in Figure 1. The 

rows and columns are made by the video segment length and the batch size values for these 

hyperparameters are given in Table 3. Batches are fed into the system during training and testing. 

Video segments are derived from the overall videos coming from the dataset. More on the 

dataset, CAD-120, is described in section 4.1. A skip frame amount is given to reduce unneeded 

frames in each video and to reduce the overall amount of data that is needed to train the models. 

From this, each video is divided up into a given set of equal segments of 65 frames each. These 

video segments are then each taken as one element in the overall batch size. If a video is too 

short for a segment, the end is buffered with blank frames with padding labels and video frames 

of zeros. The segment length is kept small to minimize the effect these blank frames cause. If the 

batch size is not filled on the last segment, it is taken as its own individual batch and not 

dropped. 
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Figure 1: Input structure of network 

     Augmentation is performed on each image before training and testing to ensure that they are 

all of equal size. In this case images start as 640 pixels in width by 480 pixels in height, they are 

converted to 85 pixels in width by 64 pixels in height to maintain the aspect ratio of the photo 

and reduce data input further. Something to note is before padding in the CAD-120 dataset that 

the original depth images are not quite the same size as the RGB images. They were padded in 

the dataset to a maximum value which represents the maximum sensor range of the given depth 

measurement. These artifacts can be seen clearer in Figure 5. Image normalization was also 

performed on the depth and RGB images. Both sets of images consist of pixels in a width x 

height grid with values ranging from 0 to 255 at each point. This causes issues in Convolutional 

Neural networks occasionally by causing gradient calculations to rise rapidly. The values 0 to 

255 were thus mapped to a continuous range from 0 to 1 to minimize how much gradients were 

influenced. 

     Labels are also generated from the input files that accompany each class in the dataset for 

prediction. They are offset 90 frames backwards so that the current frame is described by the 
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label for the future 90th frame. This means that predicted labels are approximately 3 seconds in 

the future due to the videos consisting of 30 frames per second. For detection, each set of videos 

is already organized via a folder structure. Each class folder contains sets of videos only for that 

class for a given individual subject. Each subject’s folder also organizes this information further 

to help divide the given data among them. In the end, the data fed into the system as input and is 

composed of a 5-dimensional matrix when batches are included. The dimensions consist of batch 

size, time set value, video layer width, video layer height, and video filter in that order. 

3.2 Network Structure 

     From the given inputs, the data is fed into a series of 4 shrinking convolutional LSTM layers. 

Figure 2 details how a convolutional LSTM works. Input layers are denoted with It to It+1 and so 

on as more images are given. H and C denote hidden state representations and cell output layers 

respectively. Other important operators used in the gating functions at time t are defined as it 

(the input gate), ft (the forget gate), and ot (the output gate) in Figure 3. Operator ∗ represents a 

convolutional operation and ∘ represents the Hadamard product [22]. The given equations in 

Figure 3 are representative of the equations needed to represent and update a convolutional 

LSTM layer. 

     Following these layers, a common design for convolutional layers is used in which the layers 

shrink in width and height but increase in depth. These then feed into a fully connected dense 

layer that is then interpreted as the output labels and batch size. For the predictive model, this 

was modified to represent a 3-dimensional dense layer with dimensions batch size, output label, 

a one hot vector representing the current output prediction per frame. A segmented diagram of 

the model structure can be seen below in Figure 4. 
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Figure 2: Convolutional LSTM layered structure. Based on Figure 2 in [22]. 

 

 

it = σ(Wxi ∗ It + Whi ∗ Ht−1 + Wci  ∘  Ct−1 + bi)  

ft = σ(Wxf ∗ It + Whf ∗ Ht−1 + Wcf  ∘  Ct−1 + bf) 

Ct = ft ο Ct−1 + it  ∘  tanh(Wxc ∗ It + Whc ∗ Ht−1 + bc) 

ot = σ(Wxo ∗ It + Who ∗ Ht−1 + Wco  ∘  Ct−1 + bo) 

Ht = ot  ∘  tanh(Ct) 

Figure 3: Convolutional LSTM mathematical update operations. Based on equation set 3 in [22]. 

  

 

 

Figure 4: Network Structure Diagram 

 



 

14 

 

 

3.3 Network Outputs & Interpretation 

     The network output is taken as a set of logit vectors by batch size for detection. These 

represent the likelihood that the network is giving to current label. Each sample in the batch is 

described by these vectors. The a softmax function is applied to these logits and the output is 

then interpreted as the maximum value of the softmax vector to give us the detection/prediction 

class. We are predicting either the detected high-level activity for the detection issue and the 

predicted low-level subactivity for the prediction issue. These methods are based on similar 

methods to the original papers using CAD-120, however we include samples from all subject. A 

video from each subject-class pair is excluded for testing time to ensure that network is tested on 

video it has never seen. This ensures that we can see how the models perform new unseen data. 

A total of 40 of these videos are reserved for testing/validation with 80 remaining to be used for 

training the models. Implementation of the prediction and detection models was done utilizing 

the deep learning library TensorFlow in Python3. 
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CHAPTER 4 

EXPERIMENTAL RESULTS & DISCUSSION 

4.1 Hardware Specifications 

    The experiments given in this chapter were trained on Southern Illinois University’s local 

supercomputer Big Dawg’s with specifications given in Table 1 as well as my own home 

computer with specifications given in Table 2. The main node used on Big Dawg was the GPU 

node. Only half of the resources were used due to the shared nature of the supercomputer. 

Table 1: Big Dawg GPU Node Specifications 

CPU 

Intel Xeon E5-2650 v3 

10 cores at 2 threads each 

2.3GHz base, 3.0GHz turbo 

GPU 

2 x NVIDIA Tesla K40m GPUs 

12GB of GDDR5 each 

1.43 Tflops of computing power with double precision floating point numbers 

RAM 64GB 

 

Table 2: Home Computer Specifications 

CPU 

Intel i9-9900K 

8 cores at 2 threads each 

3.6GHz base, 5.0GHz turbo 

GPU 

1 x NVIDIA RTX 2080ti GPU 

11GB of GDDR6 

13.45 Tflops of computing power with double precision floating point numbers 

RAM 64GB at 3200MHz 

 

4.2 CAD-120 Dataset 

     CAD-120 is a publicly available dataset provided by Cornell University’s Robot Learning 

Lab [5]. This dataset was used for experimental evaluation of the prediction and detection 

abilities of the Convolutional LSTM network model developed in this paper. Pictured in Figure 5 

are two samples of image sequences within this dataset. The two sets of sequences seen are 
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composed of RPG and Depth images of the data. RGB images are seen at the top of each set with 

their corresponding depth image below. These images segments can range in length within this 

set, from as small as 159 frames, to as large as 1298 frames in the largest sample. This length is 

annotated in Figure 5 as 1 to n for each video. In both cases, the videos continue past 320 frames, 

however the major actions that have taken place have already occurred. 

 

Figure 5: Sample images of two different subject and actions in the CAD-120 dataset. Original 

paper on this dataset is [5]. 

     Labeling of this dataset comes in two ways. All subjects are their own folder containing all 

videos of them. The first label, representing high-level activities, comes from the folder structure 

itself. Every given high-level activity a person performs comes from a given folder name that 

contains the video sequences. These high-level activities are treated as the label of a video 

segment when modeling high-level activity detection. The second label we are concerned with, 

representing subactivities, comes from a file within each high-level set. This file was parsed to 

label each frame with their activity. These subactivity labels were then offset by 90 frames 

backwards to have a given frame at time tk contain the label of frame at time tk+90. This allows 

for future frames to be predicted by current frames in the model. In particular, 90 frames were 

used to offset the model to 3 seconds in the future for prediction tasks. This is comparable to 
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other papers that report results for the CAD-120 dataset. 

4.3 Results & Parameters 

     The hyperparameters that were found to produce the best results for both models are reported 

in Table 3. A major difference between the two models were primarily the maximum frames 

seen by each one, the batch size, and the learning rate. By reducing the number of frames seen by 

the prediction model, we were able to reduce the amount of padding frames that needed 

processes. This was not a major issue for the detection model due to the lack of need for padding 

labels. A larger batch size was used due to this reduction in data to increase training speed. A 

lower learning rate also helped to increase accuracy in the prediction model beyond just random 

chance. 

Table 3: Model Hyperparameters 

Parameter Detection Model Prediction Model 

Photo Height Augmentation Size 64 64 
Photo Width Augmentation Size 85 85 
Maximum Frames 65 25 
Batch Size 4 6 
Kernel Shape 5 x 5 5 x 5 
Learning Rate 0.0001 0.00001 

 

     The results in Table 4 show that the model for detection may not be the best model overall; 

however, it also shows that higher accuracies can be achieved through just the use of RGBD 

images. Each set in Table 4 show results of models utilizing different amounts of data. The first 

section shows models using skeleton input, object bounding boxes, ground-truth image 

segmentation, and RGBD images. Set 2 utilizes the mentioned data in set 1, however it does not 

utilize ground-truth image segmentation. Set 3 only utilizes either just RGBD images or just 

skeleton data. This set is the most restrictive when it comes to the possible accuracy that can be 

achieved. When only considering RGBD data and ignoring information such as skeleton data, 

frame segmentation, and object bounding boxes, the detection model presented here is the best-
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in-class with an accuracy of 82.5% and with precision and recall scores of 84.17% and 82.5% 

respectively. These scores improve upon other models in its set by 1.3% and improves upon the 

original papers set 2 scores by 1.9%. With respect to other similar set 3 approaches, our model is 

better due to these increases in accuracy, precision, and recall without an increase in data intake.  

Other models are able to beat this model though at the expense of more data. Each set in Table 4 

is utilizing different amounts of data and is thus not directly comparable to one another with 

regard to accuracy, precision, and recall. 

Table 4: Accuracy of Human Activity Detection 

Model Source Accuracy Precision Recall 

Set 1 Ground-truth segmentation, object information, and skeleton data 

[1] 93.5 95.0 93.3 
[5] 84.7 85.3 84.2 
[8] 94.4 ----- ----- 

Set 2 Without ground-truth segmentation 

[1] 83.1 87.0 82.7 
[5] 80.6 81.8 80.0 

Set 3 Without ground-truth segmentation & without object bounding boxes 

[4] 78.2 ----- ---- 
[9] ----- 77.0 75.2 
[13] 81.2 ----- ----- 

Convolutional LSTM 82.5 84.17 82.5 
Random Chance [5] 10.0 10.0 10.0 

 

     The normalized confusion matrix in Figure 6 if given to show that classes are being predicted 

correctly and which classes are causing issues for the model. Labels given in blue down the 

diagonal represent positive identifications for each class. Orange labels outside of this represent 

misclassified classes and what they were classified as instead. All numbers given in the main 

matrix are normalized from 0 to 100. Values given for 0 are left blank to aid in readability. The 

row labels represent the correct labeling for each class, and the column labels represent what the 

network was able to predict. The far right side contains blue columns that represent the per-class 

precision. The far bottom blue row represents the recall of each class that was seen. Orange 
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percent values in either of these are the incorrect values that were seen and taken away on a per-

class basis. 

 

Figure 6: Normalized Confusion Matrix for High-level Activity Detection. 

     Although high-level labeling faired better than all other comparable models, sublabel 

predictions did not do nearly as well. As seen in Table 5, the prediction model developed here 

for 3 seconds in the future was only able to achieve a 41.5% accuracy with even lower precision 

and recall scores. Although it is utilizing less data and it better than random chance by a large 

margin, this is still far from achieving good accuracy. Other models are able to do better with an 
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accuracy of 52.1%; however, these low accuracies demonstrate the need for better models and 

further research in this area. 

Table 5: Accuracy of Human Sub-activity Prediction 

 Accuracy Precision Recall 

[1] 49.6 40.6 74.4 
[2] 47.7 37.9 69.2 
[3] 52.1 43.2 76.1 
[9] ----- 56.5 56.6 

Convolutional LSTM 41.5 19.43 11.6 
Random Chance [5] 10.0 10.0 10.0 

 

  



 

21 

 

 

CHAPTER 5 

CONCLUSION & FUTURE WORK 

     The need for accurate models of human action detection and prediction is a must with future 

development of technologies. By being able to predict and/or detect actions of people, robotic 

systems are able to better respond and adapt to what we are doing and what we are planning to 

do. Previous work is stated in Chapter 2 detailing the use of the many ways’ researchers have 

tried to model and detect human actions. These methods were attempted with both graph-based 

models and with neural networks. Chapter 3 then explained the models used in this paper for 

human activity detection and prediction. Chapter 4 lastly detailed the dataset used and the results 

observed with the models developed. 

     Future research in this area should focus around increasing accuracy on predicted 

subactivities to beyond 50%. Although this may prove difficult, even predicting 3 seconds ahead 

accurately can be invaluable for countless fields. Another thing that this model could be applied 

to is a larger, more complete, dataset of human actions with both more actions and subjects. This 

would help to bolster what the networks are able to predict. Applying this system to an actual 

robot tasked to aid a human in their current action would also be interesting to work on following 

this. Other applications of this technology can be applied to medical devices that aid in an 

assisted living and/or hospital environment so as to aid those given care to patients. 

     In this thesis, it has been shown that Convolutional LSTM layers can be useful in detecting 

and predicting human actions with just RGBD data. A penalty in the form of reduced accuracy is 

taken by just using this data; however, in the case of detection, it is still better than current 

methods that only utilize RGBD images. 
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