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The Citizen Continental-America Telescopic Eclipse (CATE) Experiment established

a standardized set of observation procedures and 72 volunteer observation teams with

identical equipment along the path of the 2017 total solar eclipse. CATE successfully

imaged the solar corona from 66 of the 72 observation sites resulting in a high dynamic

range animation of 90 minutes of solar corona data collected by volunteer citizen science

teams. A subgroup of CATE began work in the fall of 2017 to evaluate use of the

standard CATE observation setup for exoplanet transit observations. Light curves and

analysis of data using AstroImageJ of two well know transiting exoplanets, HD209458b (V

= 7.65, depth = 1.5%) and HD189733b (V= 7.67, depth=2.4%) are presented along with

modifications to CATE telescopes required for successful exoplanet follow up observations.
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PREFACE

The discovery of new planets outside of our own solar system has increased

significantly over the last ten years. New exoplanet surveys such as the Transiting

Exoplanet Survey Satellite (TESS) [23] could discover thousands of exoplanets over the

missions’s lifetime. We are headed into an era where astronomers will have to prioritize

planetary discoveries for follow up observations due to the large number of new

discoveries and observational time constraints on professional telescopes. There is an

opportunity for citizen science to make significant contributions to this field of study.

The Citizen CATE Experiment [26] established a national network of volunteer

amateur astronomy teams all with identical equipment to collect data on the solar corona

during the 2017 total solar eclipse. While originally designed for coronal imaging, the

CATE system is capable of imaging other celestial objects.

The purpose of this study was to determine if the Citizen CATE telescope system,

operated by volunteers, could successfully observe an exoplanet transit. Data was

collected by four volunteer teams including the author. This study reports on observation

and data collection procedures by the teams, required telescope modifications, and finally

the data reduction and analysis performed by the author. The study has shown that it is

possible to confirm exoplanet transits of bright stars with the CATE telescope system and

is a first step towards utilizing the CATE network in support of current exoplanet

observation campaigns.
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CHAPTER 1

INTRODUCTION

The Citizen Continental-America Telescopic Eclipse (CATE) Experiment [26] is a

volunteer based Citizen Science project to image the solar corona during the August 21,

2017 total solar eclipse. The experiment resulted in 72 trained observation teams spread

throughout the U.S. roughly along the path of totality from Oregon to South Carolina.

The telescope network was able to successfully image the solar corona from 66 of the 72

sites along the path of totality in 2017 resulting in a time compressed animation

representing 90 minutes of coronal evolution. Of the sites not being able to collect data,

one was due to mechanical failure and five were due to cloudy conditions. The next total

solar eclipse observation coming up in the continental United States is not until April 8,

2024, leaving several years for the Citizen CATE network to look into other astronomy

observation campaigns.

A subgroup of the CATE team consisting of Robert Baer, Kevin Cobble, Mike Conley,

and David Elmore began exoplanet transit observations in December, 2017. These

exoplanet observations with CATE scopes are to evaluate the feasibility of using the

CATE network for follow up observations to the TESS (Transiting Exoplanet Survey

Satellite) [23] mission and similar campaigns to observe exoplanet transits around

relatively bright host stars. There is the potential for CATE to contribute to the

discoveries by volunteer teams performing follow up observations of TESS candidates that

may otherwise be unfeasible follow up targets for large telescopes operated by professional

astronomy groups.

1.1 EXOPLANETS

A planet that orbits a star other than our own Sun is generally known as an

exoplanet. The existence of exoplanets has been suspected for some time. However, the

first detection of an exoplanet was not until 1988 by Campbell, Walker, and Yang [5].
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Confirmation of the discovery came in 2002 by a team including Hatzes and Cochran [15].

Discovery of new exoplanets has increased significantly in the last decade. As of

November 15, 2018, a total of 3,838 confirmed exoplanets have been discovered by

numerous surveys as shown on the NASA Exoplanet Archive [22].

Figure 1.1. Exoplanet detections per year from 1989 to Nov 15, 2018 [22].

1.1.1 Exoplanet Discovery Methods

Exoplanet discoveries include several different methods with transit photometry being

the most productive method of recent years [34] [7]. The transit method involves

observing the light output of a star over time to look for a drop in the flux (light level) of

the star as a planet passes between the star and observer as shown in figure 1.2. Discovery

of a potential exoplanet involves plotting the flux of the star as observed over time. When

a periodic dip in the flux is noticed, a potential exoplanet is flagged for follow up

observations. Plots of the stars flux over the time of the transit are known as light curves.

The curves contain information about the size of the planet relative to its host star as

2



Figure 1.2. An exoplanet transit light curve showing light level be-
fore, during, and after a transit. Host star and orbiting exoplanet are
represented above the light curve.

well as the length of the transit. Until very recently, exoplanet’s discovered by transit

method required confirmation by another detection method, typically radial velocity [7].

Morton et al., 2016 [21] was able to recently demonstrate false positive probabilities could

be accurately estimated by applying code to transit data from the Kepler mission. In

cases where not enough transit data has been collected to make a determination, follow

up observations are needed. Analysis of photometry data by fitting the data to light

curve models can be used to determine a wealth of information on the host planet and its

orbit. Additionally, follow up observations of a confirmed exoplanet are necessary to

further refine the transit data and keep from losing track of the transit over time.

1.1.2 Modeling Exoplanet Light Curves

Transits can be modeled as an eclipse of a star by a dark sphere. The simplest case

involves a planet transiting a star of uniform brightness. Mandel and Agol [20] showed

that a uniform source can be modeled as follows. The transit case discussed here will be

limited to transits of planets smaller than the host star so that at no time does the planet

3



eclipse the entire solar disk. There are then three possible positions of the planet to

consider as shown in figure 1.3.

Figure 1.3. Planetary transit stages showing three possible planet loca-
tions with the planetary disk either not transiting, partially transiting,
or fully inside the stellar disk.

Let the geometry of the transit be further defined. Consider a star of radius r∗ and a

transiting planet of radius rp as shown in figure 1.4.

Figure 1.4. Transit geometry. A planet of radius rp transits a star of radius r∗.

The distance between the centers of the star and the planet is d = zr∗ where z is the

normalized separation of the centers. The ratio of planet to the star, p = rp/r∗. For a

uniform light source the ratio of the obscured to unobscured brightness or flux,

Fe(p, z) = 1− λe(p, z) where
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λe(p, z) =


0, 1 + p < z,

1
π

[
p2k0 + k1 −

√
4z2−(1+z2−p2)2

4

]
, |1− p| < z ≤ 1 + p,

p2, z ≤ 1− p,

(1.1)

and k1 = arccos[(1− p2 + z2)/2z], k0 = arccos[(p2 + z2 − 1)/2pz].

Figure 1.3 shows the location of the planet for each case. Case 1, z > 1 + p, the planet

is not transiting the star. Case 2, |1− p| < z ≤ 1 + p, the planetary disk is partially over

the stellar disk. Case 3, z ≤ 1− p, the planetary disk is inside the stellar disk.

The change in observed flux as the planet transits the star when plotted will result in

a light curve as shown in figure 1.2. For a uniform light source, the dip in light would

resemble a square wave whereas the light curve of a typical star will have a slight curve to

the bottom of the dip. The curve is the result of limb darkening caused by the star being

centrally brighter than at the edges. For accurate light curve modeling, limb darkening

must be taken into affect [20].

This study uses AstroImageJ [9], a specialized distribution of ImageJ written in Java

for data reduction, transit modeling, and light curve plots. AstroImageJ is able to do very

fast transit modeling by utilizing Mandel and Agol’s small planet approximation taking

into account limb darkening. The approximation is for p ≤ .1, or a planet size

approximately 1/10 or smaller than the host star. The approximation assumes uniform

star brightness under the planet’s disk for z < 1− p. The flux then becomes,

F = 1− p2I∗(z)/4Ω where I∗(z) = (4zp)−1
∫ z+p
z−p I(r)2rdr and Ω =

∑4
n=0 cn(n+ 4)−1, a

function of the angle between the observer and the normal to the stellar surface, taking

into account optical properties of the observation system [8]. The normalized radial

coordinate on the disk of the star, 0 < r < 1 , and I(r) is the specific intensity as a

function of r with I(0) = 1 [20]. When 1− p < z < 1 + p the light curve can be

approximated as:
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F = 1− I∗(z)

4Ω

[
p2 cos−1

(z − 1

p

)
− (z − 1)

√
p2 − (z − 1)2

]
, (1.2)

where I∗(z) = (1− a)−1
∫ 1

z−p(I(r)2rdr).

Given some information on the host star from previous studies, it is possible to attain

planetary orbit information by analyzing the transit flux data. This includes the planetary

orbit semi-major axis, a, inclination angle i, and z0, the smallest impact parameter.

Additionally, the planet’s radius Rp, mass Mp, average densityρ , and surface gravity can

be determined from the transit data provided we have a reasonable estimate for the host

star’s radius R∗, stellar mass M∗, and the minimum planetary mass from radial velocity

measurements [7]. The depth of the transit is defined simply as a ratio of the observed

fluxes which can be described as a ratio of the planetary and stellar radii [28]:

∆F ≡ F0 − Ftransit
Ftransit

=

(
Rp

R∗

)2

(1.3)

1.1.3 Opportunities for Amateur Astronomers

The recently launched TESS mission is expected to identify thousands of exoplanet

candidates, some of which will require follow up observations [23]. Unlike previous

surveys such as Kepler that looked at dim stars in a small region of the sky, the TESS

mission will observe 90% of the sky and look at relatively bright stars. Compared to the

Kepler mission, TESS candidate stars are on average 100X brighter, which puts them in a

category of stars observable by amateur equipment such as that used by Citizen CATE.

TESS planet candidates will offer easier follow up observation targets than previous

missions such as Kepler. This opens the door for follow up observations with relatively

small ground-based telescopes. Equipment required to do follow up work is an imaging

telescope on a relatively accurate mount with the ability to stay on target for several

hours during a transit. CATE equipment with minimal modifications to the mount

adding tracking and guiding ability is suitable for this type of observation. The volunteer

network created by CATE offers some unique advantages over a single observer. The large

6



Figure 1.5. Kepler and TESS expected exoplanet discoveries. TESS
host star magnitude and planet radius (red data) compared to Kepler
(blue data) Image credit: MIT[23].

network can not only be used to observe a single target with a single scope, it is possible

for the entire network to observe a single target with multiple (up to 72) identical ground

based scopes in order to create precise light curves for follow up observations and further

exoplanet classification. The observations may provide critical data to the professional

astronomy community that would otherwise be impractical to gather on the larger

professional telescopes due to observational time constraints.

1.2 THE CATE NETWORK

The CATE network of telescopes was originally designed to position teams roughly

every 40 miles from Oregon to South Carolina in the path of the 2017 total solar eclipse.

The Citizen CATE teams all kept their observation equipment after the eclipse which has

resulted in the network of telescopes being intact and ready for another project. This

distribution of scopes across the continental U.S. gives a large window of opportunity for

observations to take place. Utilizing the entire network for observations minimizes

weather issues that can block a single location. The network covers four different time

7



Figure 1.6. Citizen CATE Experiment observation sites for the 2017
eclipse. Image credit: Citizen CATE Team, citizencate.org

zones across the U.S. allowing for a larger number of transits to be observed in one night

than from a single location.

1.2.1 The CATE Instrument

The CATE instrument is composed of off-the-shelf components consisting of a

telescope, mount and drive, camera, filters, and laptop. The telescope is an 80mm, F/6.25

refractor with an extremely low dispersion doublet primary lens manufactured by Daystar

Filters, LLC. It includes a 2 inch locking Crayford focuser. A two inch extension tube is

attached to the focuser to provide necessary back focus for the camera, which is attached

to the telescope utilizing a 1.25 inch C-mount adapter and a 2 inch to 1.25 inch converter

included with the scope. Further information on the solar setup can be found in Penn et

al., 2016 [26].

All CATE telescopes utilize Celestron CG4 mounts and tripods for solar observations.

The right ascension (RA) drive motor and controller from the Celestron dual axis drive

kit was utilized for tracking. Declination (DEC) adjustments were made manually. The

drive is powered by four D-cells, which was found to operate the mount reliably for

several hours. The mount utilized a pinhole style Televue Solar pointer to assist getting

the scope on target. The mount has no computer controlled pointing or guiding
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capabilities in the standard configuration.

The camera utilized is a Point Grey Grasshopper USB 5 Mpixel, model

GS3-Us-51S5M-C. The camera uses a Sony IMX250 CMOS array. The camera is capable

of up to 45 frames per second, which is limited by the speed of the computer and USB

port the camera is plugged into. Camera control, exposures, and GPS time stamping for

solar observations is done through an Arduino microcontroller.

A laptop was utilized for data collection with a custom MATLAB program developed

by Mathworks and CATE volunteers. The software guided volunteers through all phases

of data collection including taking calibration images, mount alignment, collection of

science images, and data backup. The software was developed utilizing input from eclipse

observation during the previous two total solar eclipses in the Faroe Islands [25] and

Indonesia where volunteers imaged the eclipse utilizing Point Grey Fly Capture software

and beta software being developed in MATLAB [26]. CATE teams additionally trained

on using FireCapture [12] image acquisition software as a backup method in the event

that primary software acquisition failed.

The entire CATE setup was designed to run from battery power in remote locations

for up to 3 hours. Several volunteer groups utilized automotive 12V 30AH or larger

battery packs and portable DC to AC power inverters to extend the system runtime by

an additional 3 to 6 hours.

The scope setups being designed primarily for solar imaging, have no finder, and only

track using the RA motor. Finding and tracking the Sun is a relatively simple procedure

aided by mount alignment procedures in the MatLab Solar Eclipse Application. Polar

alignment on the scopes is accomplished through pointing the mount North, and fine

tuning the alignment using drift alignment techniques. For more information see Penn et

al., 2015, 2016 [25] [26]. Several teams also used smart phone applications to do rough

mount alignment prior to drift aligning. This alignment is sufficient for getting on the

Sun and keeping the corona image centered for the few minutes needed during a total

solar eclipse; however, more accurate alignment is needed for night time imaging over
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several hours.

1.2.2 Coronal Imaging Outcomes

Figure 1.7. Citizen CATE Experiment coronal image March 9, 2016.
HDR image stacking and Sobel edge detection filtering by D. Elmore.
Additional editing by R. Baer.

CATE volunteer team success on August 21, 2017 was exceptionally high with 92% of

sites collecting enough data to make at least one coronal high dynamic range (HDR)

image. This high success rate further demonstrated the ability of the network to do a

successful coordinated observation. Identical equipment used in all setups allow data from

the sites to be combined. For the 2017 eclipse data, this means that HDR images from

multiple sites can be combined together to show coronal evolution over the full 90

minutes of observations performed by the CATE network. For more information, see

citizencate.org.
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CHAPTER 2

OBSERVING EXOPLANET TRANSITS WITH THE CATE INSTRUMENT

The first and most obvious difference between solar observations and exoplanet transit

observations is that the exoplanet transit observations take place at night. Data

acquisition for both types of photometry observations consist of taking a series of images.

For an exoplanet transit, the observer is imaging a part of the sky centered on the

exoplanet’s host star. The observation must take place during the transit, which occurs at

the same time regardless of your location on earth. CATE volunteer teams became

familiar with night time imaging from practicing imaging the Moon leading up to the

2017 total solar eclipse. This imaging is relatively easy to do since the Moon is a bright

target requiring short exposures. Polar alignment of the mount is significantly easier at

night when Polaris is visible than during the day. Drift alignment procedures developed

during CATE solar observation can further be used to fine tune the polar alignment. The

default sidereal tracking rate on the CG-4 mount is matched to tracking rates for stars

and therefore will work well on exoplanet transits. FireCapture [12] image acquisition

software, available as a free download from www.firecapture.de, is used to acquire images

with all data acquisition and camera control being done through the software. Image

acquisition can be automated in FireCapture allowing images to be taken at a regular

interval.

Limitations of the current Citizen CATE setup become evident when trying to image

dimmer and difficult to find objects. With no finder scope and no computer assisted

pointing, it can be nearly impossible to find the desired exoplanet host star. If the

observer can find it, tracking it successfully for the duration of the transit over several

hours can be a challenge for a scope with no feedback to the tracking system. The user

would need to use a bright reference star in the field of view (FOV) to manually keep the

image centered. Relatively short exposures of a few seconds for star field imaging will be

required in order to get enough data points to show a light curve. One can not for
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example take 30 minute exposures for a 3 hour transit as the resulting light curve would

only have 6 data points. Data collection for a star candidate should be done such that the

exposure required to detect the star is as short as possible.

Figure 2.1. HD189733 image taken by CATE volunteer Mike Conley.
HD189733 in center of image with M27, the Dumbell Nebula shown on
the right. Standard CATE imaging system, 2 second exposure.

2.1 ADAPTING THE SCOPE FOR NIGHT IMAGING

With the standard CATE mount, the observer must be able to visually find the target

star. There is no computer controlled pointing capability. Finding a target can be quite

difficult and time consuming especially when looking for target stars that are not visible

with the unaided eye, below magnitude 6. Computer controlled pointing capability in the

mount greatly simplifies the observation procedure allowing the mount to go to a target

star after an initial alignment procedure. CATE volunteer Kevin Cobble created the

Z-field dual axis CG4 micro controller using an Arduino micro controller. For

approximately $70 in parts, a CATE observer can assemble their own controller adding
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basic pointing capability to the CG4 mount.

The dual axis controller has the ability to point accurately within about 10 degrees

from a known star. It also has the ability to do feedback controlled guiding of the

telescope if a second camera attached to a finder scope is used. CATE volunteer Mike

Conley utilized an Orion 50mm mini guider finder scope with an Orion Starshoot

Autoguider camera and PHD2 [31] guidance software. PHD2 software is free and open

source. It is available from openphdguiding.org. It provides feedback to the controller as

a selected guide star drifts, sending signals to the RA and DEC motors to put the

telescope back on target. Due to the long data collection times, observers are required to

have access to AC power or a external batteries capable of keeping all electronics running

for at least six hours.

Astrometric calibration (plate solving) software from Astrometry.net [19] has been

added to the CATE laptops used for exoplanet observations. Once the user thinks they

are on target, they take a test image and submit it to the plate solving software. The

plate solving software calculates relative positions of stars in the image and comes up

with a solution, labeling brighter stars in the image. This allows the observer to verify

they are on target before taking data for the evening. The software does not rely on an

Internet connection. When the target is verified, guiding software is turned on and the

guide star is selected. The software will then work with the controller to keep on target.

With guiding turned on, the host star stays centered in the field of view (FOV) within a

user specified pixel range. In the event auto guiding is not used, the user can opt to

manually center the image throughout the duration of the observation. Control cables for

adjustments can be rather long allowing users to sit inside a house or observing room

while the telescope operates outside. This can help make observations more tolerable for

volunteers during times of extreme heat or cold.
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2.2 OBSERVATION LIMITATIONS

Stars down to magnitude 12 are observable in images taken with the CATE telescope

using 5 second exposures and zero camera gain. Although they are observable, the star is

so dim that the signal to noise ratio is very low. The brightness of the star is likely not

enough for the CATE scope to detect the small changes in light when an exoplanet passes

in front of the star without significant noise reduction techniques being used. Stars of

magnitude 9 or greater show a high enough signal above the background to detect a

transit with little to no additional noise reduction required. Clear weather is required for

an extended period of time; 3-6 hours depending on the transit length. The target star

must be high enough to clear the horizon, typically 20 degrees altitude or more, and

observations typically need to be done at least an hour past sunset or before sunrise to

allow for dark skies. The depth of the transit needs to be sufficiently large to be

observable. For CATE test targets, transit depths greater than 1% were observed. A

sufficient number of comparison stars similar in magnitude to the host star need to be

present in the FOV. A relatively short transit of 3 hours or less was desired for this study

to keep the observation sessions short. Shorter observations are much more likely to be

successful than long observations which require a longer clear weather window.

2.3 EXOPLANET OBSERVATION CANDIDATES

The Exoplanet Transit Database [30] was used to review possible candidates for

CATE exoplanet observations. HD209458b, 7.65 magnitude, depth 1.5%, and HD189733b

7.67 magnitude, depth 2.4% were selected. Both systems have been studied extensively

and have well-known stellar and planetary parameters [3] [6] [16] [18]. Dimmer stars with

known transits occurring in the same time period were also identified as secondary targets.

This was done in case a primary transit was missed on a given night, the observer may be

able to make use of the observation session to image a secondary transit that would be

useful to the study. Primary and secondary targets for the study are shown in table 2.1.

The first exoplanet observations with the CATE equipment was done by CATE

14



volunteers Elmore in Colorado and Cobble in Texas of the December 2017 transit of

HD209458b. Observation dates were further established for Illinois and Oregon for Baer

and Conley respectively. The Exoplanet Transit Database was utilized to find predicted

transit times for targets in each location.

Table 2.1. Observable exoplanet transits. Data from the Exoplanet
Transit Database [30].

Observable Exoplanet Transits

Object V (mag) dV (mag) Duration (min) Period (days)

HD209458b 7.65 0.0162 184.2 3.5247

HD189733b 7.67 0.0282 109.6 2.218

WASP-3b 10.64 0.0123 137 1.84

WASP-74b 9.7 0.0104 137.52 2.13

XO-6b 10.25 0.0131 174 3.765

WASP-14b 9.75 0.0108 167 2.24

WASP-33b 8.3 0.0151 163 1.21

KELT-3b 9.8 0.0098 197 2.7

Exoplanet observation procedures were developed similar to the beta observation

procedure for the Faroe Islands utilizing FireCapture image acquisition software, see Penn

et al., 2015 [25]. Procedures aim to make data collection standardized so observations of

the same target by multiple teams can be easily compared and combined for more

accurate curve fitting. A standardized observation worksheet based on the one developed

by Dennis M. Conti available at astrodennis.com is being used for CATE exoplanet

observations. Observers use the worksheet to record observation details such as target,

location, time, imaging properties, and observing conditions. The worksheet follows the

data collected into the data analysis phase where details of the analysis can be recorded

for each analysis run. The worksheet becomes an important part of the record keeping on

producing light curves using different analysis parameters from the original data set.
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Table 2.2. HD209458b observable transits July 15, 2018 through De-
cember 3, 2018 for Illinois and Oregon. Data from the Exoplanet Tran-
sit Database [30].

HD209458b

Tmid (HJD) Begin UT (mm/dd/yy hh:mm) End UT (mm/dd/yy hh:mm)

2458314.662 07/15/2018 2:21 07/15/2018 5:25

2458321.712 07/22/2018 3:32 07/22/2018 6:36

2458328.761 07/29/2018 4:43 07/29/2018 7:48

2458335.811 08/05/2018 5:55 08/05/2018 8:59

2458342.86 08/12/2018 7:06 08/12/2018 10:10

2458374.583 09/13/2018 0:27 09/13/2018 3:31

2458381.632 09/20/2018 1:38 09/20/2018 4:42

2458388.682 09/27/2018 2:49 09/27/2018 5:53

2458395.731 10/04/2018 4:00 10/04/2018 7:05

2458434.504 11/11/2018 22:32 11/12/2018 1:37

2458441.553 11/18/2018 23:44 11/19/2018 2:48

2458448.603 11/26/2018 0:55 11/26/2018 3:59

2458455.652 12/03/2018 2:06 12/03/2018 5:11

The Citizen CATE telescope setup is portable and so each observation session starts

with equipment being setup and the mount being aligned. A great deal of time can be

saved in this step if observers perform the polar alignment on an earlier evening. The

scope can be left in place or the positions of the scope legs can be marked on the ground

and returned to the same position. Camera equipment and the computer is connected to

the telescope during setup to allow adequate warm-up time of at least 20 minutes for the

camera. Up to two hours temperature stabilization may be required for the scope to reach

equilibrium with the outdoor temperature and clear condensation from the optics. Time

on the computer should be set to 24 hour display and synchronized. FireCapture [12]
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software on the laptop and allows the user to monitor camera temperature and observe

stability. In FireCapture the user needs to then verify the correct settings for image

capture, and take a test frame. All observations use File Image Transport System (FITS)

image files in 16 bit format. Zero camera gain is used to minimize noise. Exposure is set

to the lowest possible exposure at this point to be able to see stars in the field of view and

focus the telescope. The focus should be adjusted so that stars appear as round points of

light. A test image should be taken and examined using a FITS file reader or

AstroImageJ. The observer should examine the FITS header to make certain the image

properties listed in the FITS header match intended settings. The time recorded in the

FITS header DATE-OBS field should match the current universal date and time.

Discrepancies in the time should be noted on the data sheet.

The FITS file format has been chosen because it is a standard astronomy file format

that can be shared between groups, and it is the required format for analysis in

AstroImageJ, the software package that is used for data reduction and light curve

plotting. AstroImageJ pulls the time information for light curve plots from the FITS

header DATE-OBS field. In test observations, problems arose after data had been

collected due to computers recording the time in unexpected ways. Although time was set

to 24 hour format on all observation computers, times recorded in FireCapture [12] would

sometimes show as AM / PM, and then be converted improperly to UT time when the

DATE-OBS field was created. Furthermore, daylight savings time considerations and

computers having the wrong time zone selected caused problems with the recorded times

being off by hours. Time issues that came up could be corrected prior to model fitting

and light curve plotting although utilizing GPS for a standardized time as done for the

CATE solar project would be a better solution.

2.3.1 Calibration Images

Calibration images consisting of field flats, bias frames, and dark frames can be used

to reduce noise in the data images. While these will be required when looking at dim or
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low depth transits, they were not used for this initial observation of bright transits.

2.3.2 Test Images

The telescope should be pointed such that the target star is centered in the field of

view. Tracking on the scope should be turned on at this time, and guidance if used. Ten

test images of the star field should be take in FireCapture [12] by setting up a short data

acquisition run using the same parameters to be used in the full data acquisition. One of

the images should be plate solved using software on the local computer from

Astrometry.net [19] to verify the target. The telescope should remain on target and any

alignment or tracking adjustments should continue to be made until it is time to start

taking transit data.

2.3.3 Data Storage Considerations and Acquisition

FireCapture allows an automated data run to be setup to take any number of images

at predetermined exposures [12]. This allows the images to be captured and saved

automatically for the duration of the observation. Images should be captured for the

length of the transit plus one hour. Data acquisition should start 30 minutes prior to the

transit and continue for 30 minutes after. A delay of 3 to 10 seconds should be set

between exposures. The delay results in less data being collected to save on storage space,

and it also helps to lower noise in captured images. The user must insure that enough

storage space is on the computer prior to capturing data. Space required assuming 16Bit

FITS files at ≈ 10MB each is calculated as follows where S = amount of space, t = time

of data acquisition, and r = frame rate, S = t ∗ r ∗ 10MB. The amount of storage space

needed for a short (2 hour) transit using a 2 second exposure and a 3 second delay would

be ≈ 22GB.

During data acquisition, the observer needs to monitor progress to make sure files are

being written to the proper directory on the laptop. Any significant image drift should be

corrected by moving the telescope back on target to keep the target star centered as well
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as potential comparison stars in the field of view. Following the observation a backup of

the data should be performed to an external storage device as soon as possible.

2.4 DATA COLLECTION AND REDUCTION

Data was collected on HD209458 (Elmore, Cobble, Baer, Conley) and HD189733

(Baer and Conley). Analysis of the most complete and cleanest data for HD20948b and

HD189733b observations by CATE volunteer Conley are presented.

2.4.1 HD209458b Observation

A transit of HD209458b was observed on October 11, 2018 by CATE volunteer Mike

Conley of Salem Oregon. Conley recorded data from 11 October 2018 4:41:44 UT to 11

October 2018 8:50:12UT. The transit was predicted to occur between 5:12UT and 8:16UT

with an expected midpoint at 6:44UT. Weather for the observation was clear. Conley

used the CATE scope attached to a Celestron AVX GoTo mount with PHD2 guiding

software running on the CATE laptop. 2,474 FITS 16 bit image files were captured with

2 second exposure time, zero camera gain, and a delay of 3 seconds between exposures for

the duration of the transit plus 30 minutes before and after.

2.4.2 HD189733b Observation

Observation of HD189733b was carried out by Mike Conley in Salem Oregon on

October 12, 2018 utilizing the standard Citizen CATE setup with the addition of the

Z-field dual axis CG4 controller for pointing and computer assisted manual guidance

functions. The transit was predicted to occur between 5:25UT and 7:15UT with an

expected midpoint at 6:20UT. Weather during the observation was clear. 1,554, 16 bit

FITS images were taken using 2 second exposure, a 3 second delay, and zero camera gain

from 30 minutes before the expected transit to 30 minutes after.
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2.4.3 Data Reduction

Prior to photometry analysis, bad images were removed from the data set. In the

analysis of HD209458b, six frames were discarded that showed signs of excessive mount

movement, shifting of the star field, or streaks indicating a satellite or meteor passing

close to the region of the target or comparison stars as shown in figures 2.2 and 2.3.

Unremoved light streaks over the comparison or target stars will create excessive noise in

the data set by contributing to the flux calculation of stars.

Figure 2.2. HD209485b discarded frame showing excessive mount move-
ment. Stars appear as horizontal smears across the sky instead of well
defined points of light.
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Figure 2.3. HD209458b frames showing satellite in FOV

The FITS headers of each remaining file was modified in AstroImageJ [9] to add the

Julian date to each file header. The Julian date is defined as the time elapsed in days

from Jan 1, 4713BC Greenwich noon time. Julian date for October 11, 2018 at the

predicted transit start, 05:12 UT is: 2458402.71667. Modification of the FITS header was

done using automated tools in AstroImageJ. Care had to be taken to verify the

timestamps in the FITS header used as input for AstroImageJ were correct. After the

FITS header was updated, photometry analysis could be done on the files in

AstroImageJ. This was accomplished by calculating the relative flux of target and

comparison stars. First, the flux of each star had to be determined by comparing the light

within a circular area to the background light. This was done by setting a series of

apertures with radii that maximized the signal of the target star relative to the

background level. The innermost aperture contains pixels that are used to calculate the

total source flux while the outermost aperture defines the background flux.
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The radius of the apertures on the target and comparison stars is determined to

maximize the signal to noise ratio between the source and the background. AstroImageJ

[9] includes a radial profile (seeing profile) plot tool that assists the user in determining

the appropriate sized source and background radius. The tool displays the half width at

half maximum, full width at full maximum, and suggested radii of apertures in pixels [9].

Once the appropriate aperture size is determined, apertures for comparison stars can be

placed in AstroImageJ. The measured flux of each star is calculated by summing the

source values of each pixel in the source aperture and subtracting the background value.

Figure 2.4. Aperture placement in AstroImageJ. The source aperture
is defined by the innermost circle. Background aperture is defined as
the region between the outermost and the middle circle.
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Figure 2.5. AstroImageJ seeing profile of HD209458b. Aperture set-
tings tool displays suggested source and background annulus of 8, 14,
and 21 pixels.

Relative flux of the target star, F is then calculated by dividing the measured flux of

the target star, FT by the summation of the measured flux of n comparison stars FC . [9]

F =
FT∑n
i=1 FCi

(2.1)

The relative flux, F , of a comparison star Cj is calculated as shown below:

F =
FCj∑n
i=1 FCi

, i 6= j (2.2)
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Figure 2.6. HD209458 source and comparison stars. Target star (T1)
shown in green. Comparison stars C2 thru C10 are shown in red.
Numerical values are the calculated fluxes of each star.

Values for the relative fluxes, observation time, location information, and several

optional parameters are output from AstroImageJ [9] into a comma separated value

measurements file. Further analysis is carried out on the measurements file and images

from the observation are generally no longer needed. This results in a significant data

reduction from the original 2474, 10MB image files that took up 24GB of storage space to

a single file taking up 5MB of storage space. This type of data reduction will become

important later in the project as volunteers accumulate large amounts of data on multiple

transits. Storing the measurements file is easy to do whereas storing the original transit

images becomes unrealistic with 72 sites accumulating on the order of 25GB each per

transit observation. The observation network would generate just under 2TB of image

data per target.
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Relative flux of the host star HD209458 was calculated compared to 9 comparison

stars. Comparison stars are ideally chosen as stars in the FOV with brightness similar in

magnitude of target star. For HD209458, most of the comparison stars were considerably

lower magnitude (V= 9 to 11 magnitude) than the host star (V=7.65 magnitude). Images

were well aligned from one to the next with little drift. Out of the original 2,474 image

files, 2,468 were used for plotting the light curve.

2.4.4 Noise Reduction

A significant source of noise in the images can be from hot and dark pixels in the

image sensor. These pixels will always be either too bright or too dark and can contribute

to noisy data. Image shifting due to tracking errors can make the noise of these hot and

dark pixels more noticeable. Throughout the observation, the image shifts slightly due to

imperfect tracking and guiding on the mount. Image shift for observations of HD209458

was up to 14 pixels in the X direction and 37 pixels in the Y direction over the length of

the entire observation while image shift form one successive image to the next was much

lower, never exceeding more than a few pixels in either direction.

Calibration of images becomes important when trying to detect shallow transits.

Successful detection of transits with depths of 1% or less typically requires images to be

calibrated with a series of additional images taken during observations [4]. Calibration

images can include dark frames, flat field frames, and bias frames. The inclusion of these

calibration images in the image processing typically results in cleaner images that take

into account imperfections in the camera and optical system. The transits observed in

this project were of significant brightness and relatively high depth that did not require

such calibration to be observable.

AstroImageJ has a feature that attempts to remove hot and cold pixels (outliers) that

have values falling outside of expected range for neighboring pixels. This can remove bad

pixels as well as streaks in the images and replace the removed pixels with an average

neighboring pixel value. In some instances, removing outliers in AstroImageJ may cause a
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significant noise reduction thus improving the accuracy of the light curve, however it

could result in data degradation [9].

Figure 2.7 shows the contribution of hot pixels to the source and background flux.

Hot pixel 1 contributes to the background in frame 1, but not in frame 59 thereby

reducing the background flux level as the image shifts from frame 1 to 59. Hot pixel 2 is

outside of all apertures in frame 2, but in the source aperture in frame 59 resulting in an

increase in the source flux calculation. The image shifting can lead to noise in the data.

Removing hot pixels from the images can reduce the noise in the flux measurement. The

process of removing outliers in AstroImageJ creates another set of images with the

outliers removed that measurements can be run on. This was done for both data so the

results of measurements with and without outliers removed could be compared in each

case. If removing outliers can significantly improve the measurements, this process could

result in lower observable transit depths without the need to take image calibration data.
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Figure 2.7. Shifting of hot pixels relative to target star demonstrated
from frame 1 to frame 59 of HD209458b. Arrows indicate selected
individual pixel locations in each frame.
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Figure 2.8. HD209458b original data (top image) vs outliers removed (bottom image).
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CHAPTER 3

ANALYSIS

3.1 TRANSIT MODEL FITTING

The Light curve model fitting in AstroImageJ [9] uses the small planet approximation

described by Mandel and Agol, 2002 [20]. Model fitting assumes a transit fit for the host

star and linear fits for the comparison stars. Model fitting and plotting is described in

further detail by Collins et al., (2017) [9]. The most accurate results will be obtained

when known or suspected parameters for the host star and orbital parameters of the

exoplanet are input to AstroImageJ. Current values for HD209458b and HD189733b

orbital parameters and host star effective temperature were obtained from the NASA

Exoplanet Archive [22], or Exoplanets.org [14]. A table of the published host star and

planetary transit data is shown in table 3.1.

AstroimageJ [9] plots the relative fluxes of the host and comparison stars from data in

the measurements file. It can also perform the light curve fitting on the fly or at any time

after the plot is done. Curve fits are made more accurate by inputting known planet

orbital parameters such as the period, eccentricity, and argument of periapsis ω.

AstroImageJ automatically calculates all parameters needed on the host star from a

single user provided parameter. For all calculations, the effective temperature of the host

star was used. The inclination of the planets orbit was well known for each planet and

locked in all calculations. Quadratic limb darkening coefficients as described by Mandel

and Agol, (2002) [20] can be calculated using computer code as described by Eastmen et

al., (2013) [11]. The code takes into account properties of the imaging system including

specific optical filters used by previous transit observation campaigns. No filters were

used in observations by Conley. An initial value of .3 was picked for each quadratic limb

darkening coefficient and allowed to drift forming a best fit. This value was initially

picked due to it being close to values used for similar visual systems. It was kept the same

in all calculations for consistency. More accurate light curves will be possible in future
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observations by using standard transit observation filters and accurate calculation of the

limb darkening coefficients.

Table 3.1.

Transit and Host Star Parameters

Value HD209458b HD189733b

Host star magnitude (V ) 7.65 7.67

Transit Depth (%) 1.5 ± .0024 [32] 2.4 ± .0058 [32]

Duration (min) 184.2 [30] 109.6 [30]

Planet Radius (RJup) 1.39 ± .02 [30] 1.13 ± .01 [32]

Rp/R∗ .143 ± .002 [32] .116 ± .001 [32]

Transit Period (min) 3.52472 [27] 2.2185 [17]

Transit Eccentricity Ecc .0082 [10] .0041 [33]

Host Star Teff (K) 6092 [18] 4875 [18]

Inclination (deg) 86.59 [29] 85.51 [33]

ω (deg) 43.8 [13] 90 [14]

Spectral Type G0V [14] K1- K2 [14]

3.1.1 HD209458b

Figure 3.1 shows the AstroImageJ curve fitting interface. User specified parameters

are input and AstroImageJ performs calculations on the measurements file containing

relative fluxes of the source and comparison stars. Once curve fitting is complete,

AstroImageJ displays green boxes around all calculated parameters as shown in Figure

3.1 and outputs information on the fit statistics. While curve fitting is taking place a plot

is made displaying user selected data that can include the relative flux of the target star,

comparison stars, and the model curve fit as shown in figure 3.2. Comparison star data

points in all plots have been binned by averaging the closest two data points for display

purposes. Predicted ingress and egress lines for the start and end of the transit are
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Figure 3.1. AstroImageJ curve model fitting of HD209458b. All com-
parison stars are used in this model fit.

displayed in red. In most calculations presented, the start and end of the transit for the

curve fit is at the same point as the predicted start and end of the transit, although

AstroImageJ does allow these points to be different as demonstrated in figure 3.8.
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Figure 3.2. HD209458b transit light curve with 6 comparison stars
shown. Black line represents transit model fit. Red vertical lines indi-
cate the predicted start and end of the transit.

AstroImageJ [9] allows plots to be made showing any number of comparison stars,

independent of the number of comparison stars used in the curve fit model. Figure 3.2

shows 6 out of the nine comparison stars while figure 3.3 shows no comparison stars.
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Figure 3.3. HD209458b light curve. Curve fit shows transit data is in
close agreement with predicted transit start and end.
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Figure 3.4. HD209458b light curve. Model fit uses the 4 most linear comparison stars

Calibration of the data was then done in AstroImageJ [9] to remove outliers from each

frame. The resulting calibrated frames had considerably less observable noise in them

than the original data. Comparing figures 3.11 and 3.13 it can be seen that several data

values well outside of normal range have been removed, most notably toward the end of

the transit. These out of range values were most likely due to rough movement in the

mount as it tracked causing images of the stars to smear. The model fit shown in figures

3.4 and 3.5 was done using the 4 most linear comparison stars, dropping all other

comparison stars from the model that appeared to have non-linear behavior. The

observed radius of the planet calculated as 1.28 RJup is closer to accepted value of

1.39RJup, however the predicted egress is clearly further after the observed end of the

transit than in early curve fitting using all comparison stars.

Further analysis of the HD209458b data was done by removing outliers from the

observation images. The data was then replotted and curve fitting was performed to see if

there was any obvious improvement in the data.
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Figure 3.5. HD209458b model fit parameters using 4 most linear comparison stars.
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Figure 3.6. HD209458b light curve, outliers removed.

Removing outliers in the HD209458b data collected by Conley did cause slight

changes in the transit parameters, however it does not appear that the results were

significantly improved. It was also observed that removing outliers reduces the measured

flux of the stars as can be seen in figure 2.8 by 1.92× 105 to 1.28× 105 or about 30%.

Removing outliers in the data while making the data look slightly cleaner can reduce the

signal to noise ratio in the overall data resulting in less accurate results.

Throughout analysis of HD209458 data, transit fits were done using nine, six, and four

comparison stars. It was observed that only one of the nine comparison stars was well

behaved, with the eight other stars showing varying degrees of nonlinearity and noise

when plotted. This behavior is likely due to noise in the measurements that show up

more in dimmer comparison stars due to the lower signal to noise ratio in their

measurements. Including the maximum number of comparison stars in the measurements
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Figure 3.7. HD209458b model curve fit with 4 comparison stars used in
model fit, outlier data removed. The duration of the transit is longer,
3:32:21, and the calculated size of the planet is larger 1.52RJup.

has made the transit model fit parameters closer to expected values. It does appear that

when the background is largely comprised of poor comparison stars, a more accurate

model fit will be achieved when a large number of comparison stars is used.
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Figure 3.8. HD209458b light curve with four comparison stars, outlier
data removed. Curve fit shows a data shift in the transit happening
early and for a longer amount of time than predicted by ETD [30]
published data.
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Table 3.2.

HD209458b Measurements

Value Expected Measured

5 Dec 2017

Measured

10 Oct 2018

Transit Depth (%) 1.5 ± .0024 [32] 1.7 1.4

Transit Duration (min) 184.2 [30] 194.6 188.5

Transit Center (UT) 6:44 [30] - 6:41

Planet Radius (RJup) 1.39 ± .02 [32] 1.54 1.35

Rp/R∗ .143 ± .002 [32] .132 .120

Table 3.2 shows the measured values from Dec 5, 2017 observations by Elmore, and

Oct 10, 2018 observations by Coney using all comparison stars for the transit curve fit.

Transit depth in each case is case is 1.7% and 1.4% respectively, which are very close to

the depth of 1.5% measured by Stassun et al., 2017 [32]. Transit duration accepted value

of 184.2 min was within 10 minutes of the duration observed by Elmore. Data did not

include the first 20 minutes of the transit due to the transit starting before skies were

dark enough to observe. The observation by Conley showed closer agreement, within 4

minutes of the accepted value. Time stamps on the data and FITS file headers came from

the computer clock, which can be inherently inaccurate. For Citizen CATE solar

observations, the timestamps were done using a GPS query [26], which will need to be

utilized for later observations where the observation time will be known within a few

seconds. The 4 minute difference in transit duration, and the 3 minute difference noted in

the transit center could easily be explained by computer clock drift. The radius of the

planet and the ratio of the planetary and stellar radius are in relatively good agreement

with known values.
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3.1.2 HD189733b

The relative flux of host star HD189733 and up to 8 comparison stars were plotted

and used for transit model fitting. The brightness of comparison stars were general closer

to the target star brightness than those used for HD209458 due to a larger number of

suitable comparison stars in the FOV. Guidance of the telescope mount was sufficient to

limit movement of the image to 15 pixels in the X direction and 29 pixels in the Y

direction. While the total amount of shifting was similar to what was seen in HD209458

observations, large shifts of 15 pixels or more from one image to the next were a problem.

This was caused by manual corrections in the telescope pointing to correct long term

drift. AstroImageJ is not able to deal with image shifts of more than a few pixels from

one frame to the next and so the measurements phase of the analysis failed initially. The

images were plate solved in order to provide AstroImageJ a means of locating the target

and comparison stars on each image.

Plate solving was done by installing a local copy of the Astrometry.net plate solving

software on the observation laptop. This software runs in the background as a local web

service. AstroImageJ [9] has the ability to submit plate solve jobs to the software locally,

which saves a considerable amount of time over submitting them to an online plate

solving service. Total time required to plate solve the 1,554 images was 8.5 hours, or

about 3 frames per minutes. Once a frame is plate solved, the FITS header of the image

is updated with World Coordinate System (WCS) information. This information contains

pixel scale and location information for a reference pixel on each frame near the center of

the image. From this information, the RA and DEC coordinates for each pixel can be

calculated in AstroimageJ and used for image alignment. The center of each target and

comparison star can then be located accurately from the RA and DEC information in the

FITS header. In this way, the software can make up for relatively large shifts in the image.

The radius of the source and background annulus in AstroImageJ were chosen as 11,

20, and 30 pixels respectively. Eight comparison stars were selected for relative flux

calculations. Several of the comparison stars (V=8 to 9 magnitude) were of similar

40



brightness to the target (V= 7.67 magnitude).

Figure 3.9. HD189733b seeing profile showing ideal radii for source
and background apertures as well as full and half width half maximum
relative flux values. Inner source radius is defined from zero to 11 pixel.
Outer background radius is from 20 to 30 pixels.
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Figure 3.10. HD189733b target and comparison stars. Target star
shown in green with 8 comparison stars shown in red. Measured flux
values are displayed by target and comparison stars.
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Figure 3.11. HD189733b light curve with 8 comparison stars. Black
line indicates model curve fit.

HD189733 was plotted relative to 8 comparison stars of lesser magnitude. Values for

the host star and orbital parameters from table 3.1 were used in the model fit. All

comparison stars appear linear while the target stars curve fit appears to fit the predicted

transit model well. There is visible noise in the data, especially toward the end of the

transit. Initial fit parameters appeared reasonably close to expected values.

Calibration of the data was then done in AstroImageJ [9] to remove outliers from each

frame. The resulting calibrated frames had considerably less observable noise in them

than the original data. Comparing figures 3.11 and 3.13 it can be seen that several data

values well outside of normal range have been removed, most notably toward the end of

the transit. These out of range values were most likely due to rough movement in the

mount as it tracked causing images of the stars to smear.
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Figure 3.12. HD189733b model curve fit parameters using 8 comparison stars.

44



Figure 3.13. HD189733 light curve with 8 comparison stars, outliers
removed. Black line represents transit fit. Red lines show the predicted
start and end of the transit.
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Figure 3.14. HD189733b light curve, outliers removed. Black line rep-
resents the transit fit. Red lines show the predicted start and end of
the transit.
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Figure 3.15. HD189733b model curve fit parameters. Data outliers removed.
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Table 3.3.

HD189733b Measurements

Value Expected Measured

10 Oct

2018

Measured

10 Oct 2018

(outliers

removed)

Transit Depth (%) 2.4 ± .0058 [32] 2.9 2.9

Transit Duration (min) 109.6 [30] 107.25 108.5

Transit Center (UT) 6:20 [30] 6:23:11 6:23:22

Planet Radius (RJup) 1.13 ± .01 [32] 1.32 1.31

Rp/R∗ .116 ± .01 [32] .17 .17

An observed transit depth of 2.9% was calculated on both data sets with and without

outliers removed. This was close to the value of 2.4% observed by Stassun et al., 2017

[32]. The Transit durations of 107.25 min and 108.5min were calculated for data without

and with outliers removed respectively. These were within 2 minutes of the ETD [30]

published value for the transit duration. Observed transit center values were within 10

seconds of each other for the uncalibrated and outliers removed data, and within 3

minutes of the ETD [30] predicted time of 6:20 UT. The value of planetary radius was

very close for both the uncalibrated and outliers removed data at 1.32 RJup and 1.31 RJup

respectively. This was close to the published value of 1.13 by Stassun et al., 2017 [32].

Calculated values of Rp/R∗ were identical for both sets of data (.17) and somewhat close

to the published value of .116 [32]. Removing outliers from the HD189733b data set has

resulted in the measurements for transit duration, transit center, and planetary radius

moving closer to accepted values while other parameters were unchanged. It does appear

to have improved the accuracy of this measurement in this single case.
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CHAPTER 4

SUMMARY

Exoplanet observations of bright targets, V ≈ 7.6 magnitude with transit depths of

approximately 2% have been successfully demonstrated with the slightly modified CATE

telescope systems for exoplanets HD209458b and HD189733b. Modifications to the scope

system consist of adding an inexpensive guide scope, guide camera, and the addition of a

micro controller system for pointing and guidance capability on the standard CG4 mount.

In addition, the CATE observer needs to install the DEC motor to the CG4 mount that

came with their original kit, and install and configure three free software packages; PHD2

[31] guiding software, AstroImageJ [9] or FITS Liberator [24] to view FITS files, and

Astrometry.net [19] plate solving software. Observers utilize Fircapture image capture

software already installed on their CATE laptop. Total cost for these modifications is

$600 as tested. It is also possible that volunteers who already own a computerized mount

can install the CATE telescope on that mount for exoplanet observations.

Observations of HD189733b demonstrated much cleaner light curve plots than

HD209458b, likely due to the amount of appropriate comparison stars in the FOV as well

as the larger transit depth of 2.4% vs 1.5%. The CATE telescope FOV of 1 degree will

limit the target stars CATE teams can look at due to the possible lack of appropriate

comparison stars in the FOV. This is most evident in the observation of HD209458 where

only one comparison star of similar magnitude is in the FOV. It is likely that we can

successfully image transits at least down to magnitude 9 with similar transit depths of 1%

or greater without image calibration. Observations of shallow transits of the TESS Earth

and Super Earth candidates are likely not going to be possible for a single observer due to

shallow transit depths on the order of .01%. By incorporating calibration images into the

data collection and correcting for atmospheric attenuation over the course of the

observation, it should be possible to achieve transit detection down to .1% [4] for a single

telescope observation.
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The strength in the Citizen CATE Experiment lies in the creation of the nationwide

CATE telescope network operated by volunteers with identical equipment. While it has

been shown that a single telescope can detect a transit of a relatively bright star, what

remains to be demonstrated is the limit of the telescope network. Utilizing the full

network to observe a single transit could result in a significant improvement over the

sensitivity of a single scope. The network also has the possibility of lengthening the

transit observation window. While a single scope could observe a transit for a maximum

of of 5-6 hours in duration [4], the CATE network stretching over 4 time zones can extend

the transit observation window to 9-10 hours. The network would also offer significant

redundancies in observations since local weather conditions would be minimized during a

network wide observation. Follow up transit observations for the sake of keeping transit

data fresh may be especially well suited for the CATE network due to their ability to

conduct single observations of multiple bright targets in one night, or utilize the network

to go after dimmer targets. The nature of the CATE volunteer network, made up mostly

of educators and students, provides a unique opportunity to engage an evolving

population of students in citizen science through exoplanet observations that have real

scientific value.
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